In-beam Mössbauer study of ⁵⁷Mn implanted into a low-temperature xenon

Y. Yamada · Y. Kobayashi · M. K. Kubo · M. Mihara · T. Nagatomo · W. Sato · J. Miyazaki · S. Sato · A. Kitagawa

© Springer Science+Business Media Dordrecht 2013

Abstract The in-beam Mössbauer spectrum of ⁵⁷Mn implanted into a Xe solid at 14 K was measured. Four singlets were observed in the spectrum, assigned to ⁵⁷Fe⁺ ($3d^7$), ⁵⁷Fe⁺ ($3d^64s^1$), ⁵⁷Fe⁰ ($3d^64s^2$), and ⁵⁷Fe⁰ ($3d^74s^1$). The assignments were in agreement with calculated electron densities at nuclei reported in the literature.

Y. Yamada (⊠)

Tokyo University of Science, 1-3 Kagurazaka, Shijuku-ku, Tokyo 162-8602, Japan e-mail: yyasu@rs.kagu.tus.ac.jp

Y. Kobayashi The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Y. Kobayashi RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

M. K. Kubo International Christian University, 3-10-2, Osawa, Mitaka-shi, Tokyo 181-8585, Japan

M. Mihara Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

T. Nagatomo High Energy Accelerator Research Organization, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

W. Sato Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan

J. Miyazaki Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan

S. Sato · A. Kitagawa National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

Proceedings of the 32nd International Conference on the Applications of the Mössbauer Effect (ICAME 2013) held in Opatija, Croatia, 1–6 September 2013.

The β -decay of ⁵⁷Mn did not disturb the surrounding Xe lattice, showing a singlet peak, and the excited states were stabilized in the time range of the Mössbauer measurements of ~100 ns. The production mechanism was explained in terms of the reduction of ⁵⁷Mn^{x+} and ⁵⁷Fe^{y+} ions by free electrons in the Xe matrix.

Keywords In-beam Mössbauer spectroscopy \cdot ⁵⁷Mn \cdot ⁵⁷Fe \cdot Electronic configuration \cdot Xe solid

1 Introduction

In-beam Mössbauer spectra of ⁵⁷Mn provide useful information on the surrounding solid material. ⁵⁷Mn has a short lifetime (126 s); hence, the Mössbauer spectra have to be measured using an in-beam setup combined with a heavy-ion accelerator. This technique has been applied to probe the nature of metal oxides [1] and metal halides [2]. Studies using ⁵⁷Mn are also important for providing a new source material for chemical reactions, as the after-effects of β -decay are generally small. It has been reported that β -decay of ⁵⁷Mn produced ⁵⁷Fe with increased valence without disturbing the surrounding materials or the chemical structure [3]. ⁵⁷Mn implanted into rare gas solids represents the simplest system to study the chemical and electronic states of ⁵⁷Fe atoms produced just after the β -decay of the parent ⁵⁷Mn.

The matrix isolation technique is useful for studying unstable species by trapping them in an inert matrix. Mössbauer spectra of Fe atoms in an Ar matrix have been reported by Barrett [4], and Fe atoms and Fe₂ dimers were found. Emission Mössbauer spectra of ⁵⁷Co in low-temperature Xe matrices have been reported by Micklitz [5], and Fe⁺ and Fe⁰ were found as produced after a nuclear electroncapture (EC) decay of ⁵⁷Co. The implantation of ⁵⁷Co into solid Ar was performed in a very clean system [6, 7], and two kinds of electronic configurations, 3d⁷ and 3d⁶4s¹, were found for Fe⁺. The production mechanism of Fe⁺ with the excited electronic 3d⁷ state was explained in terms of charge transfer between the ⁵⁷Fe atom and surrounding Ar atoms [8] as well as the insulating nature of Ar. EC decay of ⁵⁷Co produced defects in the fcc Ar lattice, which allowed for the transition from 3d⁷ to 3d⁶4s¹.

We have previously reported the in-beam Mössbauer spectra of ⁵⁷Mn implanted into a low-temperature Ar matrix, where the the spectra were measured during implantation into Ar at 18 K [9]. Only one singlet peak ($\delta = -2.16(2)$ mm/s) assigned to ⁵⁷Fe⁺ (3d⁷) was found, indicating that the ⁵⁷Fe atoms produced by β -decay of ⁵⁷Mn had a unique form, and were not a mixture of the ground state ⁵⁷Fe⁺ (3d⁶4s) or neutral ⁵⁷Fe⁰. It was explained that the ⁵⁷Mn²⁺ ion was trapped in a substitutional position of the fcc Ar lattice, and that ⁵⁷Fe³⁺ was produced by β -decay of ⁵⁷Mn without disturbing the surrounding Ar lattice, which was followed by a charge transfer process with neighboring Ar resulting in the production of ⁵⁷Fe⁺ (3d⁷).

In this study, we investigated the in-beam Mössbauer spectrum of ⁵⁷Mn implanted into a low-temperature Xe matrix. The nature of a Xe solid is different from that of an Ar solid. The electron mobility of an Ar solid and Xe solid are reported to be 1000 and \sim 4500 cm²V⁻¹s⁻¹, respectively [10]. The combination with free electrons is more dominant in the Xe matrix, and the emission Mössbauer spectra of ⁵⁷Co in the Xe matrix showed both Fe⁺ (3d⁷) and Fe⁰ (3d⁶4s²) [5, 11]. It is interesting to study the fate of ⁵⁷Fe produced by the β -decay of ⁵⁷Mn in the Xe solid in which free electrons are not negligible, and Fe atoms or ions with different electronic configurations other than Fe⁺ (3d⁷) may be obtained in the Xe matrix.

2 Experimental

The measurements were performed at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan, using a heavy-ion synchrotron accelerator (HIMAC). A projectile fragmentation reaction of a primary beam of ⁵⁸Fe ions and a target of ⁹Be atoms produced the ⁵⁷Mn nuclei. A beam pulse of 1.2×10^6 particles was generated every 3.3 s with a 250 ms duration. A parallel-plate avalanche counter (PPAC) [12] was employed as a detector. The anti-coincidence method was employed to obtain high-quality spectra with improved S/N ratios [13]. Xe solid samples were prepared on a substrate made of brass cooled down to 14 K using a pulsed tube refrigerator. Xe gas with purity of 99.999 % was introduced at 1.50 sccm (standard cubic centimeters per minute) using a flow controller for 49 h; the Xe solid had a thickness of approximately 3 mm. The implanted ⁵⁷Mn atoms were distributed around a depth of 0.1 mm from the surface of the Xe solid. The measurement was performed for 42 h while implanting ⁵⁷Mn. The mixture ratio of the atoms was estimated to be ⁵⁷Mn/Xe = 10^{-12} . The counting rate of the PPAC was stable at 0.2 cps (count per second) throughout the measurements.

3 Results and discussion

The Mössbauer spectrum measured during implantation of ⁵⁷Mn into the Xe solid at 14 K is shown in Fig. 1. While Mössbauer spectra of ⁵⁷Mn in the Ar solid had only one peak of ⁵⁷Fe⁺ (3d⁷) [9], the spectrum in this study had more than one peak. We fitted the spectrum assuming four singlet peaks; the Mössbauer parameters are summarized in Table 1. The most intense peak at $\delta = -1.89(5)$ mm/s was assigned to ⁵⁷Fe⁺ (3d⁷). The second largest peak at $\delta = +0.82(6)$ mm/s was assigned to a ground state neutral Fe⁰ (3d⁶4s²) atom. Mössbauer parameters for ⁵⁷Fe⁺ (3d⁷) and Fe⁰ (3d⁶4s²) were in good agreement with the values reported previously [8, 9]. The two other singlet peaks at $\delta = -0.04(7)$ mm/s and $\delta = -0.84(12)$ mm/s were not reported previously.

Emission Mössbauer spectra of ⁵⁷Co in a mixture Ar/Xe solid were reported by Van der Heyden, in which the doublet peak of the ground state ⁵⁷Fe⁺ (3d⁶4s¹; $\delta =$ 0.3 mm/s, $\Delta E_Q = 1.8$ mm/s) was observed [8]. The EC-decay of the ⁵⁷Co produced a defect in the fcc Xe lattice, and the non-cubic symmetry enhanced the transition from the excited ⁵⁷Fe⁺ (3d⁷) states to the ground state ⁵⁷Fe⁺ (3d⁶4s¹). The ⁵⁷Fe⁺ (3d⁶4s¹) showed doublet peaks because of the asymmetry of the environment. On the other hand, the doublets corresponding to the ⁵⁷Fe⁺ (3d⁶4s¹) were not observed in our spectrum (Fig. 1). The β -decay of ⁵⁷Mn does not disturb the fcc lattice of the Xe solid, and ⁵⁷Fe⁺ (3d⁶4s¹) produced in cubic symmetry should show a singlet

Table 1 Mössbauer parameters of ⁵⁷ Fe (\leftarrow ⁵⁷ Mn) in a Xe matrix at 14 K. Four singlet peaks were assumed to have the same linewidths	Species	δ mm/s	Γ mm/s	Area intensity
	Fe ⁺ 3d ⁷	-1.89(5)	0.35(9)	34(8)%
	$Fe^+ 3d^64s^1$	-0.04(7)		25(8)%
	Fe ⁰ 3d ⁶ 4s ²	+0.82(6)		28(8)%
	Fe ⁰ 3d ⁷ 4s ¹	-0.84(12)		14(8)%

peak. Therefore, the peak at $\delta = -0.04(7)$ mm/s was assigned to ground state ${}^{57}\text{Fe}^+$ (3d⁶4s¹). The production mechanism will be discussed later.

Another singlet peak at $\delta = -0.84(12)$ mm/s corresponds to the species having an electron density between those of Fe⁺ (3d⁷) and Fe⁺ (3d⁶4s¹), as the δ value is between the δ value of Fe⁺ (3d⁷) and Fe⁺ (3d⁶4s¹). The isolated Fe atom that satisfies this condition is Fe⁰ (3d⁷4s¹). The lowest excited state of a neutral free Fe⁰ atom is Fe⁰ (3d⁷4s¹), which is 0.86 eV above the ground state Fe⁰ (3d⁶4s²) [14].

The assignments of the four singlet peaks found in our experiment, ${}^{57}\text{Fe}^+$ $(3d^7)$, ${}^{57}\text{Fe}^+$ $(3d^64\text{s}^1)$, ${}^{57}\text{Fe}^0$ $(3d^64\text{s}^2)$, and ${}^{57}\text{Fe}^0$ $(3d^74\text{s}^1)$, were confirmed by comparing the observed δ values with calculated electron densities at the ${}^{57}\text{Fe}$ nucleus. Electron densities in iron nuclei $\rho(0)$ with various electronic configurations were calculated by J. P. Desclaux using Dirac-Folk calculations [15]. The observed δ values were plotted against the calculated $\rho(0)$ values (Fig. 2), and there was good correlation between the observed δ and the calculated $\rho(0)$.

In the case of ⁵⁷Mn in the Ar matrix, a charge transfer process between ⁵⁷Mn and surrounding Ar atoms was dominant to reduce Mn^{x+} ions, and thus ⁵⁷Mn²⁺ was trapped in the Ar solid for a duration comparable to its lifetime. The effects of free electrons in the Ar solid were negligible. The β -decay of ⁵⁷Mn²⁺ produced ⁵⁷Fe³⁺ ions followed by the charge transfer process with neighboring Ar resulting in the selective production of ⁵⁷Fe⁺ (3d⁷) [9]. If we assume that charge transfer is the main process and the effects of free electrons are negligible in the Xe solid, ⁵⁷Fe⁺ (3d⁷) should be produced selectively as follows. The first and second ionization potentials of Mn are $I_{Mn}^1 = 7.44$ eV and $I_{Mn}^2 = 15.65$ eV, whereas the first ionization potential of Xe is $I_{Xe}^1 = 12.14$ eV; therefore, the implanted ⁵⁷Mn^{x+} ion should be stabilized as the ⁵⁷Mn⁺ ion. The β -decay of ⁵⁷Mn⁺ produces ⁵⁷Fe²⁺ followed by charge transfer with Xe atoms. The first and second ionization potential of Fe are $I_{Fe}^1 = 7.91$ eV and $I_{Fe}^2 = 16.20$ eV, and reduction by the charge transfer process produces an excited

state ⁵⁷Fe⁺ (3d⁷) as $I_{Fe}^2 - I_{Xe}^1 = 4.06$ eV. The β -decay of ⁵⁷Mn does not disturb the Xe lattice, and the transition from ⁵⁷Fe⁺ (3d⁷) to ⁵⁷Fe⁺ (3d⁶4s¹) is forbidden in cubic symmetry. In practical terms, other species including ⁵⁷Fe⁺ (3d⁶4s¹), ⁵⁷Fe⁰ (3d⁶4s²), and ⁵⁷Fe⁰ (3d⁷4s¹) were also observed in this study.

The effect of free electrons is not negligible in the Xe matrix [8] even though the electron mobility is very small [10]. The implanted ⁵⁷Mn^{x+} ion was stabilized as a neutral ⁵⁷Mn⁰ atom by the combination with free electrons supplied in the Xe matrix. The β -decay of ⁵⁷Mn⁰ produced excited ⁵⁷Fe⁺ without disturbing the fcc Xe lattice. The excited ⁵⁷Fe⁺ should have various electronic configurations other than 3d⁷(⁴F), for example 3d⁶4s¹ (⁴D). The charge transfer process with the surrounding Xe atoms could not reduce Fe⁺ (I¹_{Fe} < I¹_{Xe}), but combination with free electrons in the Xe solid occurred resulting in ⁵⁷Fe⁰ atoms. In this process, the ground state ⁵⁷Fe⁰ (3d⁶4s²) was obtained. The reduction by free electrons also produced the excited ⁵⁷Fe⁰ (3d⁷4s¹) state. Thus, Fe atoms and ions with various electronic configurations were produced. In practical terms, the β -decay does not disturb the Xe lattice, and the transitions between the same parities were kept forbidden, resulting in the existence of the excited species, ⁵⁷Fe⁺ (3d⁷) and ⁵⁷Fe⁰ (3d⁷4s¹).

4 Conclusion

The in-beam Mössbauer spectrum of ⁵⁷Mn implanted into a Xe solid at 14 K was measured. Four singlet peaks were observed, ⁵⁷Fe⁺ (3d⁷), ⁵⁷Fe⁺ (3d⁶4s¹), ⁵⁷Fe⁰ (3d⁶4s²), and ⁵⁷Fe⁰ (3d⁷4s¹). Combination with free electrons in the Xe solid stabilized the neutral ⁵⁷Mn⁰ atom, and β -decay of ⁵⁷Mn produced ⁵⁷Fe⁺ with various electronic states. The free electrons also reduced ⁵⁷Fe⁺ ions to produce ⁵⁷Fe⁰ atoms. The β decay of ⁵⁷Mn does not disturb the surrounding cubic symmetry of the fcc Xe solid, and thus no doublet peaks were observed. The ion and atom with excited states, ⁵⁷Fe⁺ (3d⁷) and ⁵⁷Fe⁰ (3d⁷4s¹), were observed because transitions to the ground states were forbidden in the surrounding Xe atoms with cubic symmetry. **Acknowledgements** We are grateful to Dr. S. Kamiguchi of the Materials Characterization Team in RIKEN for production of ⁵⁸Fe-enriched ferrocene as the ion source material.

References

- Kobayashi, Y., Nagatomo, T., Yamada, Y., Mihara, M., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A., Kubo, M.K.: Hyperfine Interact. 198, 173 (2010)
- Nagatomo, T., Kobayashi, Y., Kubo, M.K., Yamada, Y., Mihara, M., Sato, W., Miyazaki, J., Mae, K., Sato, S., Kitagawa, A.: Hyperfine Interact. 204, 125 (2012)
- Nakada, M., Watanabe, Y., Endo, K., Nakahara, H., Sano, H., Mishima, K., Kubo, M.K., Sakai, Y., Tominaga, T., Asai, K., Iwamoto, M., Kobayashi, Y., Okada, T., Sakai, N., Kohno, I., Ambe, F.: Bull. Chem. Soc. Jpn. 65, 1 (1992)
- 4. Barrett, P.H., McNab, T.K.: Phys. Rev. Lett. 25, 1601 (1970)
- 5. Micklitz, H., Barrett, P.H.: Phys. Rev. Lett. 24, 1547 (1972)
- 6. Micklitz, H., Van der Heyden, M., Langouche G.: Europhys. Lett. 4, 35 (1987)
- 7. Micklitz, H., Van der Heyden, M., Langouche, G.: Hyperfine Interact. 42, 1105 (1988)
- 8. Van der Hyeden, M., Micklitz, H., Bukshpan, S., Langouche, G.: Phys. Rev. B 36, 38 (1987)
- 9. Yamada, Y., Kobayashi, Y., Kubo, M.K., Mihara, M., Nagatomo, T., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: Chem. Phys. Lett. **567**, 14 (2013)
- 10. Miller, L.S., Howe, S., Spear, W.E.: Phys. Rev. 166, 871 (1968)
- 11. Van der Heyden, M., Pasternak, M., Langouche, G.: Hyperfine Interact. 29, 1315 (1986)
- 12. Saito, T., Kobayashi, Y., Kubo, M.K., Yamada, Y.: J. Radioanal. Nucl. Chem. 255, 519 (2003)
- Nagatomo, T., Kobayashi, Y., Kubo, M.K., Yamada, Y., Mihara, M., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: Nucl. Instrum. Methods Phys. Res. Sect. B 269, 455 (2011)
- 14. Reader, J., Sugar J.: J. Phys. Chem. Ref. Data 4, 353 (1975)
- 15. Reschke, R., Trautwein, A., Desclaux, J.P.: J. Phys. Chem. Solid 37, 837 (1977)