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Abstract The 57Fe Mössbauer spectra of antiferromagnetic nanoparticles have
been measured for almost half a century and often displayed a specific (non-
superparamagnetic) temperature evolution of the spectral shape which looks like
a quantum superposition of well-resolved magnetic hyperfine structure and single
line or quadrupolar doublet of lines with the temperature-dependent partial spectral
areas. We have developed a quantum-mechanical model for describing thermody-
namic characteristics of an ensemble of ideal and “uncompensated” antiferromag-
netic nanoparticles with uniaxial magnetic anisotropy in the first approximation
of slowly relaxing macrospins of magnetic sublattices. This model allows one to
qualitatively describe the macroscopic quantum effects observed in the Mössbauer
spectra and to clarify principally the difference in thermodynamic properties of fer-
romagnetic and antiferromagnetic particles revealed in spectroscopic measurements.

Keywords Antiferromagnetic nanoparticles · Mössbauer spectroscopy ·
Magnetic dynamics · Macroscopic quantum phenomena

1 Introduction

For the last half a century a number of the Mössbauer spectra were collected on
materials containing fine particles of different magnetic nature [1–4]. The vast ma-
jority of the absorption spectra independent of the particles magnetic nature display
qualitatively the same evolution of the spectral shape with temperature changing:
a well-resolved hyperfine magnetic structure, i.e. sextet of lines for 57Fe nuclei,
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Fig. 1 57Fe Mössbauer
absorption spectra of an
ensemble of single-domain FM
particles, calculated within the
multi-level relaxation model
[5, 6] at D = 1 GHz and
KV/kBT = 0.1, 2, 4, 6, 10
(a–e). Hereafter,
Hhf = 500 kOe and
q = 0.35 mm/s
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observed at lower temperatures gradually transforms through a broaden hyperfine
structure at intermediate temperatures to the collapse of the hyperfine structure into
a single line or a quadrupolar doublet of lines at higher temperatures (Fig. 1). This
universal transformation of the spectral shape is usually treated in the framework
of the simplest two-level relaxation model for single-domain ferromagnetic (FM)
particles [5, 6] based on the Néel’s relaxation of homogeneously magnetized FM
particles with uniaxial magnetic anisotropy (superparamagnetism) [7]. In order to
take into account thermal excitations inside the local energy wells of magnetic
anisotropy more refined multi-level relaxation models have been developed [5, 6, 8]
and extended for describing the Mössbauer spectra of nanoparticles in a magnetic
field [9, 10]. These models are efficiently used for evaluating the experimental spectra
of magnetic nanoparticles [11–13].

At the same time, a principally different kind of the temperature evolution of
the spectral shape has been observed exceptionally for antiferromagnetic (AFM)
nanoparticles long ago [1] and multiply repeated later [4, 14–16]. The collapse
of a low-temperature well-resolved hyperfine magnetic structure into a single line
or a quadropolar doublet of lines at high temperature is not accompanied by a
‘conventional’ line broadening at intermediate temperatures, all the spectral lines
remain narrow in the whole temperature range and only the partial weights of the
well-resolved hyperfine magnetic structure and the single line or the quadropolar
doublet of lines change gradually with temperature increasing (Fig. 2). Such a
spectral transformation evidences for the quantum nature of the effect because it
testifies first of all about the temperature-dependent populations of well-defined
energy states, the ground one with a large value of the effective hyperfine field at
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Fig. 2 57Fe Mössbauer
spectra of an ensemble
of ideal AFM particles with
S = 100, k = 0.001 and
KV/kBT = 0.1, 1, 2, 4, 10
(a–e), calculated in the slow
relaxation limit, D << �0
(see text)
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nuclei, Hhf, and an excited state or states with a small or zero Hhf value providing
that magnetic relaxation processes are slow enough. A proper explanation of the
behavior has been given recently in terms of macroscopic quantum phenomena in
AFM nanoparticles [17–19].

In this contribution we will discuss the principles and problems of the theoretical
approaches for describing the Mössbauer spectra of non-ferromagnetic nanoparticles
including the abovementioned macroscopic quantum effects observed in the absorp-
tion spectra of AFM nanoparticles.

2 Thermodynamics of ideal AFM nanoparticles

Magnetic properties of AFM nanoparticles have been considered on a phenomeno-
logical level by Néel in terms of uncompensated magnetic moments on two magnetic
sublattices (superantiferromagnetism) [20]. This idea has been widely explored for
describing magnetization curves of AFM particles [21–23] and in studies of macro-
scopic quantum phenomena in small AFM particles [24, 25]. However, the ground
state of AFM nanoparticles is much more complicated as compared to that for a bulk
sample, which is evidenced from the atomic-scale magnetic modeling [26]. Moreover,
relaxation processes should occur even for an ideal AFM nanoparticle and resemble
those for an ensemble of FM particles in the first approximation whereas the
presence of an uncompensated magnetic moment results in a slight distortion of the
idealized pattern [17, 19]. This requires a proper theory to be developed for analyzing
experimental data and characterizing real materials containing nanoparticles.



M.A. Chuev

-90 0 90 180 270 -90 0 90 180 270
-1,0

-0,5

0,0

P
i+1i

P
ii+1

E
/K

V

a
-1,0

-0,5

0,0

S = 30
b

-1,0

-0,5

0,0

S = 100

-90 0 90 180 270

, deg.

c

θ, deg.θ , deg.θ

Fig. 3 Schemes of the energy levels of a FM particle (a) and the lowest-lying energy levels of ideal
AFM particles with S = 30 (b) and 100 (c) for k = 0.01

The simplest possible model for describing thermodynamic properties of an
ensemble of ideal AFM nanoparticles with uniaxial anisotropy has been recently
developed within the Hamiltonian in the two magnetic sublattices approximation
[17, 19]:

Ĥ = A
S(S + s + 1)

[
Ŝ1Ŝ2 − k

2

(
Ŝ2

z1 + Ŝ2
z2

)]
. (1)

Here, A is the renormalized exchange interaction constant (A > 0), Ŝi is the spin
operator for i-th magnetic sublattice, Ŝzi is the operator of its projection onto the
easy axis, k = KV/A, Kis the magnetic anisotropy constant, Vis the particle volume,
S1 = S2 = S, s = 0. The presence of uniaxial magnetic anisotropy in the Hamiltonian
(1) removes the degeneration of the multiplet states with definite values of the total
spin M and, however, does not admix the states with different values of the total
spin projection m. In this case the stationary particle’s states can be described by
the eigenvalues E(m)

j and eigenfunctions �
(m)

j of the Hamiltonian (1), which can be
rather easily calculated (see [17, 19]).

The schemes of the energy levels for a FM particle and low-lying energy levels
for AFM particles within the effective macroscopic energy barrier KV are shown
in Fig. 3. A qualitative difference in the energy level schemes for FM and AFM
nanoparticles is clearly seen in the figure. In the case of ferromagnetism (A< 0) the
ground FM state represents actually a quasi-continuous spectrum independent of the
K value. Due to this circumstance, one can use the macroscopic model of continuous
magnetization diffusion [27] for describing magnetic and thermodynamic properties
of FM nanoparticles while a quantum-mechanical description is preferable mainly
for optimizing computational procedures [3, 5, 6, 8–10].

The situation is drastically different for AFM nanoparticles (A > 0) because
the scheme of the energy level splitting for AFM particles depends significantly
on particular values of the anisotropy constant K and the spin S (Fig. 3). The
pressing point here is a smooth transition from the strong coupling of the sublattice
magnetizations S1 and S2, when a value of k (or K) for a given S value is small
enough, to the weak coupling of the sublattice magnetizations, when the k values
for a given S value are large enough for forming weakly-split (quasi-degenerate)
doublets of energy levels attributed to the wave functions localized in different
energy wells. Such a transition between two regimes for the lowest-lying pairs of the
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adjacent energy levels with a definite m value is formally characterized by a critical
scaling parameter [17, 19]

β
(m)
1,2 = kS2

m + 1
. (2)

The strong coupling regime is realized at β
(m)
1,2 << 1 and the weak coupling of the

sublattice magnetizations is observed at β
(m)
1,2 >> 1. There are only few energy levels

in the range of the macroscopic energy wells for S and k values small enough, e.g., five
energy levels for S = 30 and k = 0.01 with only two the lowest levels corresponding
to the weak coupling regime (Fig. 3). The number of energy levels in the range of the
macroscopic energy wells increases with S increasing. For instance, due to scaling
relation (2), the energy schemes for two pairs of values S = 30, k = 0.01 and S = 100,
k ≈ 0.001 are almost identical.

3 Mössbauer spectra of ideal AFM nanoparticles

In order to calculate experimentally observed characteristics, in particular, the
Mössbauer spectra, in the framework of the scheme, we will stay within the simplest,
but physically justified limiting case of slow magnetic relaxation when the rates of
relaxation transitions between the energy levels for an AFM particle are much lower
as compared to the characteristic frequency of sublattice magnetization precession.
In this case the equilibrium state of an ensemble of AFM nanoparticles can be
characterized by the mean spin values for each stationary state

S̄(m)

j ≡ S̄(m)

j1 = S̄(m)

j2 = ±
〈
�

(m)∗
j

∣∣∣ Ŝz

∣∣∣�(m)

j

〉
(3)

and by the corresponding populations of the states for a given temperature T

W(m)

j =
exp

(
−E(m)

j /kBT
)

∑
n,i

exp
(
−E(n)

i /kBT
) . (4)

Then, the Mössbauer spectra of an ensemble of AFM nanoparticles in the presence of
quadrupolar hyperfine interaction can be described by the formalism with averaging
over the random orientation of the easy magnetization axis that composes an angle
� with the principal axis z′ of the electric field gradient at the nucleus [5, 6, 19].
The cross-section for absorption of a gamma-quantum with energy Eγ = �ω can be
expressed for 57Fe nuclei in a rather simple form:

σ(ω) = σa

∑
j,m

W(m)

j

∫
sin �d�L

(
ω, �,S̄(m)

j /S
)
. (5)

Here, σ a is the effective absorber thickness,

L(ω, �, x) = −�0

6
Im

∑
η

∑
mgme
j, m̃ j

Cmgmem̃ j

ω̃ − λ̃ j(�, x) − xωgmg + i�0/2
, (6)

Cmgmem̃ j = V(η)+
mgm̃ j

〈
me

∣∣ m̃ j
〉
V(η)

memg
, (7)
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Fig. 4 57Fe Mössbauer spectra
of an ensemble of ideal AFM
particles with S = 100,
k = 0.01 and KV/kBT = 0.1, 1,
2, 4, 10 (a–e)
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�0 ≡ �0/� is the width of the excited nuclear level in frequency units, ω̃ = ω − E0/�,
E0 is the energy of the resonance transition, mg and me are the nuclear spin
projections onto the hyperfine field direction for the ground (g) and excited (e)
nuclear states, V(η)

memg are the matrix elements for the operator of interaction of
the gamma-quantum with polarization η and the nucleus, the sum over random
polarizations for an ensemble of particles is reduced to that over η = x, y, z [6, 10],

ωg,e = −gg,eμN Hhf/�, (8)

gg,e are the nuclear g-factors, μN is the nuclear magneton, λ̃ j(�, x) are the eigenval-
ues of the Hamiltonian of combined magnetic and quadrupolar hyperfine interaction
for the excited state

Ĥ(e)(�, x) = xωe Î(e)
z + q

[
Î2

z′ − 1
3

Ie(Ie + 1)

]
, (9)

Ig = 1/2 and Ie = 3/2 are the nuclear spins, Î(e)
z is the operator of spin projections

onto the Hhf direction, q is the constant of quadrupolar interaction, Îz′ is the operator
of the nuclear spin projection onto the direction of the axis z′, m̃ j ≡ m̃ j(�, x)

are the nuclear spin projections onto the quantization axis for which the operator
representing the Hamiltonian (9) is diagonal. As clearly seen from (5), (6), (8) and
(9), the spectral lineshape is principally defined by values of the reduced hyperfine
field

H̄( j,m)

hf = S̄(m)

j

S
Hhf. (10)



Macroscopic quantum effects observed in Mössbauer spectra

Fig. 5 57Fe Mössbauer spectra
of an ensemble of ideal AFM
particles with S = 1000,
k = 0.001 and KV/kBT = 0.5,
2, 3, 4, 10 (a–e)
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Using (1), (3)–(9), one can calculate the Mössbauer absorption spectra of an en-
semble of slowly-relaxing ideal AFM nanoparticles for arbitrary values of model
parameters A, K,S, V and Hhf at a given temperature. Typical 57Fe spectra calculated
within the model for AFM nanoparticles with S = 100, k = 0.001 and 0.01 are
shown in Figs. 2 and 4 as a function of the effective energy barrier KV/kBT. The
spectra demonstrate qualitatively a gradual collapse of a well-resolved hyperfine
magnetic structure at low temperature into a quadrupolar doublet at very high
temperature, which is not accompanied by a ‘conventional’ relaxation broadening
of lines at intermediate temperatures (like that in Fig. 1) and repeatedly observed in
the experimental Mössbauer spectra [1, 4, 14–16]. A quantum nature of the effect is
evidenced by the temperature-controllable changes in the populations of a ground
state (quasi-degenerate doublet or doublets of energy levels) with a large value
of the effective hyperfine field H̄( j,m)

hf and excited states (quasi-symmetrical and
thus delocalized) with a small value of H̄( j,m)

hf providing that magnetic relaxation
processes between them are slow enough. Indeed, the presence of scaling in the
energy level splitting schemes specified by (2) evidences for the effect to be observed
(and have been already observed) in the Mössbauer spectra of AFM nanoparticles
with different sizes and not just for very small AFM particles.

When the particles size and/or the magnetic anisotropy K increase, the energy
spectrum of an AFM particle tends asymptotically toward a quasi-continuous one
displaying a strongly asymmetric shape of spectral lines with sharp outer fronts
and inner fronts strongly smeared to the center of the spectrum (Fig. 5). Such a
transformation is characteristic for the Mössbauer spectra of FM nanoparticles in
the slow relaxation limit [5, 6, 12]. This fact explains fractionally the ‘universal’
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temperature evolution of the spectral shape observed in the experiments on mag-
netic nanoparticles of different magnetic nature. However, such a similarity is only
seeming because the density of energy states for FM and AFM nanoparticles are
essentially different even in the case of quasi-continuous energy spectrum of an
AFM particle (Fig. 3). The very effect of a gradual collapse of a low-temperature
well-resolved hyperfine magnetic structure into a quadrupolar doublet at high
temperature is obviously non-superparamagnetic in character. Its superposition
with the strongly asymmetric line shape can principally simulate the ‘relaxation’
transformation of Mössbauer spectra typical for FM particles. This fact obviously
requires for reconsidering and re-evaluating the whole set of experimental spectra
collected so far on non-ferromagnetic nanoparticles in a more accurate way.

4 Mössbauer spectra of uncompensated AFM nanoparticles

Thermodynamics of uncompensated AFM particles can be described in the frame-
work of the same Hamiltonian (1) with the uncompensated spin s, S1 = S + s and
S2 = S. Similar to the case of ideal AFM particles discussed before, the presence of
the axial magnetic anisotropy eliminates degeneracy of the states with certain values
of M, but does not mix the states with different values of the projection of total spin
monto the anisotropy axis according to Hamiltonian (1). This essentially simplifies
the calculation of the energy levels of an AFM particle for arbitrary values of S and s
[18]. The informal difference from the case of ideal AFM particles is determined by
the different characters of expansion of wave functions

�
(m)

j =
∑

i

c(m)

ji ψ
(m)

i (11)

by the basis functions [18]

ψ
(m)

i ≡ ψ(m)
m1,m2

. (12)

Typical schemes of the splitting of the energy levels of an AFM particle with S = 100
and s = 0, 1.5 and 3 as functions of the magnetic anisotropy constant are shown in
Fig. 6. Similar to the case of ideal AFM particles, the most important here is the
transition from the regime of a strong coupling of the magnetic moments of the
sublattices, when the values of k are sufficiently small and the terms with different
values of M do not intersect to the weak coupling regime when for sufficiently large
values of k a characteristic fine structure of the low-lying levels forms. In all cases,
for the specified values of S and s at small k, only a few levels hit the region of
the macroscopic energy barrier and, as k is increased, the number of levels in the
under-barrier region grows (Fig. 6). The lowest levels are always strongly localized
and correspond to a weak coupling regime and with increasing energy the levels
delocalize so that the transition to the strong coupling regime occurs [19].

In the slow magnetic relaxation limit, analogously to (3), the stationary states (11)
can be characterized by the average values of the spin for each ith sublattice

S̄(m)

ji = ±
〈
�

(m)∗
ji

∣∣∣ Ŝzi

∣∣∣�(m)

ji

〉
. (13)
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Fig. 6 Schemes of the lowest-lying energy levels splitting as a function of the reduced magnetic
anisotropy constant k = KV/A for AFM particles with S = 100 and s = 0 (a), 3/2 (b), and 3 (c). The
dashed lines indicate changes in the effective energy barrier KV/A

Fig. 7 57Fe Mössbauer spectra
of an ensemble of AFM
particles with S = 100,
k = 0.01 and s = 5/2 (circles),
and 3 (solid lines) for
KV/kBT = 0.5, 2, 3, 4, 10 (a–e)
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whereas the equilibrium populations of the states are again defined by (4). One can
find small values S̄(m)

ji for the “symmetric” states in the strong coupling regime, the
sharp growth of these values at the break of the coupling between the magnetic
moments of the sublattices up to saturation of S̄(m)

ji for the strongly “localized” states
in the weak coupling regime, and scaling of these characteristics in accordance with
parameter β

(m)

j [18].
Now, one can calculate the Mössbauer spectra of an ensemble of slowly relaxing

uncompensated AFM nanoparticles by the same (5)–(9), where he should replace
S̄(m)

j by S̄(m)

ji and make additional summation by i. Typical spectra of the ensemble
of AFM nanoparticles with S = 100 and s = 0, 5/2, and 3 are shown in Fig. 7.
They display the above-mentioned features of the formation of the energy scheme
for AFM nanoparticles and qualitatively demonstrate the experimentally observed
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Fig. 8 57Fe Mössbauer spectra
of an ensemble of AFM
particles with S = 100,
k = 0.01 and KV/kBT = 0.5, 2,
3, 4, 10 (a–e) for the Gaussian
distribution of s with mean
value s̄ = 0 and width �s = 3
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gradual transition from the low-temperature well-resolved hyperfine magnetic struc-
ture to the high-temperature quadrupole doublet of lines [1, 14–16].

The presence of the uncompensated spin does not change principally the quali-
tative character of the temperature evolution of the spectra, but modifies the shape
of the spectra to some extent and the characteristic temperature of the transition
from the effective magnetic sextet to the doublet of lines. The quantum nature of
this effect for arbitrary values of Sand sis caused by the temperature variation in
the populations of the low-lying “localized” states with a large Hhf value and the
higher-lying “delocalized” states with a small Hhf value [18] under the sufficiently
slow relaxation condition. To describe the spectra of real samples, it is necessary
to take into account the spread in s for the ensemble of AFM particles. Figure 8
shows the Mössbauer spectra of the ensemble of AFM nanoparticles calculated by
the described scheme with averaging over the Gaussian probability function of swith
the average value s̄ = 0 and the width �s.

5 Conclusions

Thus, the quantum-mechanical model for slowly relaxing macrospins of magnetic
sublattices of AFM nanoparticles clarifies the principal difference in thermodynamic
behavior of FM and AFM particles. This approach can be easily generalized for
describing ferrimagnetic nanoparticles within a similar treatment of the Hamiltonian
(1) in terms of multiplet states expanded in the basis functions (12) for unequal
spins S1 �= S2. The situation becomes naturally more complicated (like that for
FM nanoparticles [3, 9, 10]) since for an arbitrary H direction the multiplet states
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(11) with different values of m are generally admixing. However, in the most
informative case of nanoparticles in a magnetic field weak as compared to the
effective exchange field a generalization of the formalism derived above can be
performed in terms of the perturbation theory. Actual directions of further studies
in the field is a generalization of the theory for describing magnetization curves and
Mössbauer spectra of AFM and ferromagnetic nanoparticles in an applied magnetic
field as well as for the presence of metamagnetism when the magnetic anisotropy
energy is not much smaller than the exchange interaction, which is rather natural
for very fine particles. The physical meaning of the latter case is justified from
both theoretical considerations and experimental studies of finite-size effects in
magnetic nanoparticles [28] whereas the physical interest is obviously due to that
non-ferromagnetic nanoparticles with k ≥ 2 in the Hamiltonian (1) are characterized
by two nonequivalent pairs of local energy minima.
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