Structural and ⁵⁷Fe Mössbauer study of EuCr_{1-x}Fe_xO₃ nanocrystalline particles

H. M. Widatallah · T. M. H. Al-Shahumi · A. M. Gismelseed · Z. Klencsár · A. D. Al-Rawas · I. A. Al-Omari · M. E. Elzain · A. A. Yousif · M. Pekala

Received: 9 September 2011 / Accepted: 9 November 2011 © Springer Science+Business Media B.V. 2011

Abstract A structural and Mössbauer study of mechanosynthesized $\text{EuCr}_{1-x}\text{Fe}_x\text{O}_3$ nanocrystalline particles (~20–30 nm) is presented. The lattice parameters increase with increasing x-value leading to an increasingly distorted structure. The crystallite sizes range between 20 nm and 30 nm. Magnetic and ⁵⁷Fe Mössbauer measurements show the samples with x < 0.7 to be paramagnetic and those with $x \ge 0.7$ to be partially superparamagnetic at 298 K. The 78 K Mössbauer spectra of the samples with x = 0.3–1.0 are composed of well-resolved two sextets that are explicable in terms of the structural model that we recently have proposed for the EuCrO₃ nanoparticles according to which the transition metal ions and Eu³⁺ partly exchange their usual sites in the perovskite-related structure (Widatallah et al., J Phys D Appl Phys 44:265403, 2011). Consequently, the two sextets obtained at 78 K refer to Fe³⁺ ions at the usual B-octahedral site and the A-dodecahedral site usually occupied by Eu³⁺.

Keywords Perovskite · Mössbauer spectroscopy · Milling · XRD · Magnetization

1 Introduction

 $EuCrO_3$ and $EuFeO_3$ are useful materials in multiple fields of application that include, among others, solid oxide fuel cells, chemical sensing and optical

Z. Klencsár

H. M. Widatallah (🖾) · T. M. H. Al-Shahumi · A. M. Gismelseed · A. D. Al-Rawas · I. A. Al-Omari · M. E. Elzain · A. A. Yousif

Department of Physics, Sultan Qaboos University, P. O. Box 36, 123, Muscat, Oman e-mail: hishammw@squ.edu.om

Chemical Research Institute, Hungarian Academy of Sciences, Pusztaszeri út 59-67, Budapest, 1025, Hungary

communications [1–3]. The compounds crystallize in the space group *Pbnm* with four distorted perovskite units in the true crystallographic orthorhombic cell [1–4] where Eu^{3+} and the transition metal ions occupy the dodecahedral A- and octahedral B-sites, respectively. Both solids are anti-ferromagnetic with only weak ferromagnetism due to spin canting below ~181 K and ~662 K respectively [3, 5]. Rather than using the term Néel temperature (T_N) to refer to these temperatures [3] we shall follow Gibb [4, 5] in referring to them as Curie temperature (T_C). They actually signify the transition from the weak ferromagnetic state to the paramagnetic one. Previous studies on the $EuCrO_3$ / $EuFeO_3$ solid solutions were mainly performed on the $EuCr_{1-x}Fe_xO_3$ microcrystalline particles [2, 5]. Recently we have shown an unusual cationic site exchange to exist in $EuCrO_3$ nanocrystalline particles [1]. In the present study we report our preliminary studies on nanocrystalline $EuCr_{1-x}Fe_xO_3$ particles.

2 Experimental

Nanocrystalline EuCr_{1-x}Fe_xO₃ particles were prepared using mechanosynthesis starting from appropriate amounts of high purity Eu₂O₃, Cr₂O₃ and α -Fe₂O₃ in the 1: 1-*x*:*x* molar ratio (*x* = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) using an identical milling and sintering regime to that reported by us recently [1]. X-ray powder diffraction (XRD) patterns were collected with a Philips PW1710 diffractometer using CuK α radiation ($\lambda = 1.5406$ Å). The thermal variation of the magnetization was recorded with a Faraday balance under a 1.5 T external magnetic field. ⁵⁷Fe Mössbauer spectra were recorded in the transmission mode at 298 K and 78 K using a 50 mCi ⁵⁷Co/Rh source. The isomer shifts are quoted relative to iron foil.

3 Results and discussion

Figure 1a shows the XRD patterns recorded from the pre-milled reactants' mixtures sintered (8 h) at the temperatures indicated. All patterns could be indexed to a singlephased perovskite-related EuCr_{1-x}Fe_xO₃ structure. The crystallite sizes were found to be in the range of 20-30 nm. Figure 1b shows the lattice parameters to generally increase with x. The increase in the b parameter becomes more pronounced at higher x. Consequently, a more distorted unit cell is to be expected at high x values. This unit cell expansion is expected as more of the larger Fe³⁺ ions (0.785 Å) replace the smaller Cr³⁺ ones (0.755 Å) [6]. Referring to our Rietveld refinement of the XRD pattern of the sample with x = 0.0 (EuCrO₃) [1], where the Eu³⁺ and Cr³⁺ ions were shown to partially exchange the A- and B-sites, a more pronounced site-exchange of Eu^{3+} and Fe^{3+} is anticipated in $EuCr_{1-x}Fe_xO_3$ nanoparticles on the basis of the higher ionic size of Fe³⁺. Indeed initial analysis of ¹⁵¹Eu data (not shown) suggests that a considerable amount of Eu³⁺ ions in the spectra of all samples exists at the transition metal B-sites. The T_C values were found to increase with increasing x from \sim 181 K, 172 K, 202 K, 425 K and 525 K for the EuCr_{1-x}Fe_xO₃ nanoparticles with x = 0.0, 0.1, 0.3, 0.5 and 0.7 respectively. The samples with x = 0.9 and 1.0 showed a similar T_C of \sim 625 K.

Fig. 1 a The XRD patterns of the EuCr_{1-x}Fe_xO₃ nanoparticles obtained at the temperatures indicated and **b** the variations with lattice parameters *a*, *b* and $c/\sqrt{2}$ with *x*

Fig. 2 The ⁵⁷Fe Mössbauer spectra recorded from the EuCr_{1-x}Fe_xO₃ nanoparticles at **a** 298 K, and **b** 78 K

The ⁵⁷Fe Mössbauer spectra recorded from the nanoparticles at 298 K and 78 K are given in Fig. 2a and b respectively. The fitted parameters are given in Table 1. In line with the magnetic measurements, the 298 K spectra of the particles with x = 0.1–0.5 depict paramagnetic doublets for x = 0.1 and 0.3 and a superparamagnetic doublet for x = 0.5 with very small quadrupole splitting that are presumably related to the distorted orthorhombic structure. For the samples with x = 0.7 and 0.9, where T_C > 298 K, the spectrum is composed of a broad magnetic six-line pattern superimposed on a central doublet. The latter is due to superparamagnetic particles whose volumes are smaller than the critical (blocking) volume required for depicting

X	Component	δ (mm/s)	ε (mm/s)	Δ (mm/s)	$H_{eff}(T)$	A(%) ±3
0.1	Doublet	0.34	0.22			100
	Doublet	0.36	0.22			100
0.3	Sextet I	(0.46)		(-0.03)	(51.3)	(66)
	Sextet II	(0.47)		(0.03)	(46.4)	(34)
	Doublet	0.36	0.30			100
0.5	Sextet I	(0.47)		(-0.02)	(53.5)	(68)
	Sextet II	(0.45)		(0.03)	(51.2)	(32)
	Doublet	0.37	0.43			23
0.7	Sextet I	0.40 (0.47)		0.04 (-0.02)	45.6 (53.5)	49 (68)
	Sextet II	0.48 (0.45)		0.04 (0.03)	41.1 (51.2)	28 (32)
	Doublet	0.31	0.79			12
0.9	Sextet 1	0.39 (0.48)		0.01 (0.03)	50.3 (55.3)	74 (87)
	Sextet II	0.27 (0.51)		-0.01 (0.02)	46.3 (51.8)	14 (13)
1.0	Sextet 1	0.36 (0.47)		-0.02 (0.04)	50.2 (55.2)	82 (85)
	Sextet II	0.38 (0.46)		-0.01 (-0.09)	46.5 (53.3)	18 (15)

Table 1 The ⁵⁷Fe Mössbauer parameters for the $EuCr_{1-x}Fe_xO_3$ nanoparticles at 298 K, and 78 K (between brackets and in italics)

 δ : isomer shift, ε : quadrupole splitting, Δ : quadrupole shift, H_{eff} : magnetic hyperfine field, A: spectral area

the ferromagnetic nature. While the gradual increase in the quadrupole splitting values with x agrees with above XRD result that unit cell gets more distorted at higher x values, it also reflects an increasing cationic Eu-Fe site exchange. The magnetic part of the 298 K spectra, was fitted with two hyperfine-split sextets. These generally reflect Fe³⁺ in different environments. The gradual increase in the magnitude of H_{eff} for both sextets with increasing x clearly reflects enhanced exchange magnetic interactions. For the nanoparticles with x = 1.0, the 298 K spectrum is comprised of two sextets whose H_{eff} values are smaller than that reported for bulk EuFeO₃ (51.8 T) [5].

The Mössbauer spectrum recorded at 78 K, which is smaller than T_C for all samples, shows a very poorly resolved magnetic spectrum for the sample with x = 0.1. This is possibly due to the very small number of ⁵⁷Fe nuclei and the associated limited magnetic exchange interactions. Well resolved six-line magnetic patterns were attained for the rest of the samples (x = 0.3 - -1.0); each of which was fitted with two sextets (Table 1). We attribute the sextets with the higher magnetic fields in the above Mössbauer analysis with B-sites Fe³⁺ ions having a majority Fe³⁺ nearest cationic neighbors. The sextets with lower fields are associated with A-site Fe³⁺ as well as B-site Fe³⁺ with Eu³⁺ and/or Cr³⁺ nearest neighbors. A possibility that our initial analysis of ¹⁵¹Eu Mössbauer data supports as indicated above.

References

- Widatallah, H.M., Al-Harthi, S.H., Johnson, C., Klencsar, Z., Gismelseed, A.M., Moore, E.A., et al.: J. Phys. D Appl. Phys. 44, 265403 (2011)
- 2. Niu, X., Du, W., Du, W.: Sens Actuat. B Chem. 99, 399 (2004)
- 3. Tsushima, K., Takemura, I., Osaka, S.: Solid. State Commun. 7, 71 (1969)
- 4. Gibb, T.C.: J. Chem. Soc. Dalton Trans. 2245 (1981)
- 5. Gibb, T.C.: J. Chem. Soc. Dalton Trans. 2031 (1983)
- 6. Winter, M.J.: www.webelements.com. University of Sheffield, UK (1995-2011)