Electrical conductivity and local structure of barium manganese iron vanadate glass

Shiro Kubuki · Hitomi Masuda · Kazuhiko Akiyama · Isao Furumoto · Tetsuaki Nishida

Received: 23 August 2011 / Accepted: 18 October 2011 © Springer Science+Business Media B.V. 2011

Abstract Local structure and electrical conductivity of semiconducting $20BaO \cdot 10Fe_2O_3 \cdot x MnO_2 \cdot (70 - x)V_2O_5$ glass (x = 0-30), abbreviated as xBFMV, were investigated by means of ⁵⁷Fe-Mössbauer spectroscopy, differential thermal analysis (DTA) and DC four-probe method. Mössbauer spectrum of these vanadate glasses consists of a doublet with an identical isomer shift (δ) of 0.38±0.01 mm s⁻¹, indicating that distorted FeO₄ tetrahedra constitute the structural units with distorted VO₄ tetrahedra and VO₅ pyramids. Quadrupole splitting (Δ) gradually increases from 0.70 ± 0.02 to 0.87 ± 0.02 mm s⁻¹ with an increase in the MnO₂ content, indicating an increased local distortion of Fe^{III}O₄ tetrahedra. DTA study of these glasses showed a gradual increase of glass transition temperature (T_g) from 329±5 to 411±5°C, showing an improved thermal durability. T_g vs. Δ plot' yielded a straight line with a large slope of 707°C(K)/mm s⁻¹, proving that Fe^{III} played a role of network former (NWF). An isothermal annealing of 10BFMV glass at 500°C for 1000 min resulted in a marked increase in the electrical conductivity (σ) from $(4.5\pm3.9) \times 10^{-7}$ to $(1.4\pm0.3) \times 10^{-2}$ S cm⁻¹ and a decrease in the activation energy for the electrical conduction (E_a) from 0.33 ± 0.07 to 0.11 ± 0.01 eV, while Δ of Fe^{III} decreased from 0.76 ± 0.02 to 0.49 ± 0.02 mm s⁻¹. These results suggest that decrease

S. Kubuki (🖂) · H. Masuda · K. Akiyama

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachi-Oji, Tokyo 192-0397, Japan e-mail: kubuki@tmu.ac.jp

I. Furumoto · T. Nishida Major in Advanced Materials, Graduate School of Advanced Science and Engineering, Kinki University, Kayanomori 11-6, Iizuka, Fukuoka 820-8555, Japan

T. Nishida

Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Kayanomori 11-6, Iizuka, Fukuoka 820-8555, Japan in the distortion of $Fe^{III}O_4$ tetrahedra involved with the structural relaxation causes an increase in the probability of electron hopping from V^{IV} or V^{III} to V^V .

Keywords Barium manganese iron vanadate glass · ⁵⁷Fe-Mössbauer spectroscopy · Electrical conductivity · Structural relaxation

1 Introduction

Vanadate glass is known to be a semiconductor with an electrical conductivity (σ) of $10^{-7}-10^{-5}$ S cm⁻¹. The electrical conduction is known to be caused by polaron hopping from V^{IV} or V^{III} to V^V[1]. A drastic increase in σ was discovered in annealed barium iron vanadate glass [2] having a registered trademark of '*NTA glass*^{TM'} in Japan. Nishida reported a large charge-discharge capacity of 150 mAh g⁻¹ in lithiumion battery (LIB) in which cathode active material of annealed vanadate glass, Li₂O-Fe₂O₃-V₂O₅-P₂O₅, was used successfully [3]. This result indicates that vanadate glass could be a good candidate for the cathode active material of LIB. In the present study, substitution of manganese for vanadium was investigated in barium iron vanadate glass, BaO-Fe₂O₃-V₂O₅, in order to investigate the relationship between the local structure and the conductivity.

2 Experimental

Vanadate glasses with a composition of 20BaO·10Fe₂O₃ · *x*MnO₂·(70-*x*)V₂O₅, abbreviated as *x*BFMV, were prepared by a conventional melt-quenching method. Weighed amounts of BaCO₃, Fe₂O₃, MnO₂ and V₂O₅ of reagent grade were well mixed in a mortar and melted at 1200°C for 1 h in an electric muffle furnace. Homogeneous dark brown glass samples could be prepared when '*x*' was equal to or less than 30. Enriched isotope of ⁵⁷Fe₂O₃ (⁵⁷Fe = 95.54 %) was used for some sample preparation. Isothermal annealing was carried out at 500°C for 1000 min. Mössbauer measurement was performed by a constant acceleration method with a source of ⁵⁷Co(Rh) and a reference of α -Fe foil for isomer shift (δ). DTA was conducted from RT to 500°C under a heating rate of 10°C min⁻¹ by using 10 mg of finely pulverized glass sample. α -Al₂O₃ was used as a reference of the temperature. Values of σ were measured at temperatures ranging from 30 to 125°C by dc-four probe method under the electric current from -1.0 to 1.0 mA.

3 Results and discussion

Mössbauer spectra of 10BFMV glass measured before and after isothermal annealing at 500°C for 1000 min, are shown in Fig. 1. When 'x' was increased from 0 to10, 20 and 30, consistent δ value of 0.38 ± 0.01 mm s⁻¹ were observed, while quadrupole splitting (Δ) increased from 0.70 to 0.76, 0.79 and 0.87±0.02 mm s⁻¹. These results indicate that Fe^{III} atoms form distorted Fe^{III}O₄ tetrahedra, and that they became more distorted when MnO₂ was substituted for V₂O₅. In annealed samples, a marked decrease in Δ was observed like 0.52 (x = 0), 0.49 (x = 10) and 0.43±0.02 mm s⁻¹ (x = 20), showing a largely decreased local distortion of FeO₄

tetrahedra involved in the structural relaxation. In case of annealed sample with x of 30, Δ of 0.54±0.02 mm s⁻¹ was observed, which is slightly larger than other annealed samples. This can be explained by the difference in the ionic radius of Mn^{IV} (39 pm) that is much smaller than that of V^{IV} (53 pm) [4]. It is considered that oxygen atoms constituting the network will be intensively attracted to Mn^{IV} in both as-quenched glass and annealed samples. Large Δ of 0.87±0.02 mm s⁻¹ obtained for as-quenched glass sample supports this idea. We can describe that chemical property of "vanadate glass" is predominantly observed when MnO₂ content is equal to or less than 20 mol%.

DTA curves of *x*BFMV glass are depicted in Fig. 2. A gradual increase in glass transition temperature (T_g) was observed from 329 to 347, 372 and 411±5°C, while that in crystallization temperature (T_c) from 378 to 400, 429 and 465±5°C. A linear relationship found between T_g and Δ of Fe^{III} was termed ' T_g - Δ rule' [5], *i.e.*:

$$T_g = a\Delta + b \tag{1}$$

where *a* and *b* are slope and intercept of the straight line, respectively. According to the ${}^{T}g^{-}\Delta$ rule' [5], large '*a*' value of 680°C(K)/mm s⁻¹ is generally obtained when Fe^{III} is located at tetrahedral site as network former (NWF), whereas '*a*' becomes only 35°C(K)/mm s⁻¹ when Fe^{III} is located at octahedral site as network modifier (NWM). In the present study, a large '*a*' of 707°C(K)/mm s⁻¹ was obtained, indicating that Fe^{III} atoms occupy tetrahedral site as NWF.

A slight decrease in σ value from $(2.5\pm1.2) \times 10^{-6}$ to $(4.7\pm3.8) \times 10^{-7}$, $(4.2\pm0.3) \times 10^{-7}$ and $(2.3\pm1.0) \times 10^{-7}$ S cm⁻¹ was observed when the 'x' value of xBFMV glass increased from 0 to 10, 20, and 30. These results will be due to decrease in number of carriers (V^{IV} or V^{III}) when MnO₂ was substituted for V₂O₅. In the case of 10BFMV glass, a marked increase in σ was observed from $(4.7\pm3.8) \times 10^{-7}$ to $(1.4\pm0.3) \times 10^{-2}$ S cm⁻¹ after the annealing. According to the small polaron hopping theory [1], temperature dependence of σ is expressed by:

$$\sigma T = \sigma_0 \exp(-E_a/kT), \qquad (2)$$

where E_a and k are activation energy for electric conduction and Boltzmann constant, respectively. As shown in Fig. 3, a drastic decrease in the E_a from 0.33 ± 0.07 to 0.11 ± 0.01 eV was observed after the annealing of 10BFMV glass. On the other hand, a constant E_a value of 0.29 ± 0.06 eV was obtained in the case of 30BFMV glass. It is interesting that the decrease in the local distortion of Fe^{III}O₄ tetrahedra and a marked increase in the conductivity are clearly observed when 'x' is 10 or less, *i.e.*, the distortion of network involved with an increase in σ is intrinsic the vanadate glass.

4 Summary

Structure of *x*BFMV glass with *x* of 0, 10, 20 and 30 was investigated by means of ⁵⁷Fe-Mössbauer and DTA. Fe^{III} atoms are incorporated in the glass matrix to form distorted FeO₄ tetrahedra, and play a role of NWF at the substitutional sites of VO₄ tetrahedra by sharing corner oxygen atoms with each other. Electrical conductivity of 10BFMV glass increased from 4.7×10^{-7} to 1.4×10^{-2} S cm⁻¹ after isothermal annealing conducted at 500°C for 1000 min. Increase in the conductivity is ascribed to a decrease in the distortion of VO₄ and FeO₄ units constituting the glass network, accompanied by a decrease in the activation energy for the electron hopping (*E_a*) from 0.33 to 0.11 eV, and an increased probability of polaron (3d-electron) hopping from V^{IV} or V^{III} to V^{IV}.

Acknowledgement One of the authors (SK) expresses his gratitude for the financial support by Grant-in-Aid for Scientific Research (C) (KAKENHI, No. 23550229).

References

- 1. Mott, N.F.: Electrons in disordered structures. Adv. Phys. 16(61), 49-144 (1967)
- 2. Nishida, T.: Japanese Patent No. 3854985 (2006)
- 3. Nishida, T., Yoshida Y., Takahashi, Y., Okada, S., Yamaki, J.: Mössbauer study of LiFeVPO_x as a new cathode material for lithium-ion battery. J. Radioanal. Nucl. Chem. **275**, 417–422 (2008)
- Evans, H.T., Jr.: Ionic radii in crystals, properties of solids (Sec. 12). In: Lide, D.R., Frederikse, H.P.R. (eds.) CRC Handbook of Chemistry and Physics, 74th Edition, pp. 12–8, 12–9. CRC press, Florida (1993)
- Homonnay, Z., Musić, S., Nishida, T., Kopelev, N.S., Vertés, A.: Mössbauer effect in inorganic glasses. In: Vértes, A., Homonnay, Z. (eds.) Mössbauer Spectroscopy of Sophisticated Oxides, pp. 27–87. Akademiai Kiado, Budapest (1997)