Synchrotron radiation ⁵⁷Fe-Mössbauer spectroscopy using nuclear monochromator

Takaya Mitsui · Ryo Masuda · Naohisa Hirao · Ko Mibu · Makoto Seto

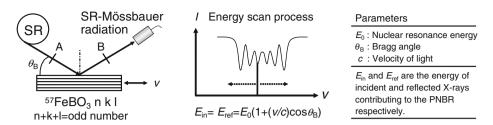
© Springer Science+Business Media B.V. 2011

Abstract A synchrotron radiation (SR) Mössbauer spectrometer has been developed by using a nuclear Bragg monochromator (NBM). It enables energy-domain ⁵⁷Fe SR-Mössbauer spectroscopy (SRMS). Doppler-shifted SR-Mössbauer radiation is produced by pure nuclear Bragg reflection (PNBR) from an oscillating ⁵⁷FeBO₃ crystal near the Néel point. In this paper, we describe the optics and its applications, including high-pressure SRMS, grazing incidence SRMS and γ -ray diffraction studies with the Rayleigh scattering of Mössbauer radiation (RSMR) method.

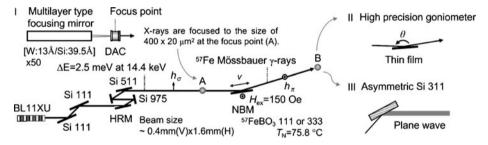
Keywords Synchrotron radiation · Mössbauer effect · Nuclear resonant scattering · Bragg scattering

1 Introduction

To bring a marked progress in Mössbauer spectroscopy (MS), we have successfully developed a SR- 57 Fe-Mössbauer spectrometer with a NBM, which yields high-brilliant SR- 57 Fe-Mössbauer radiation of about three natural linewidths (See Fig. 1) [1–3]. This paper reports on the optics and applications.


T. Mitsui (\boxtimes) \cdot R. Masuda \cdot M. Seto

Japan Atomic Energy Agency, Sayo-cho, Sayo-gun, Hyogo 679–5148, Japan e-mail: taka@spring8.or.jp


N. Hirao Japan Synchrotron Radiation Research Institute, 1–1–1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679–5198, Japan

K. Mibu Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466–8555, Japan

Makoto Seto Research Reactor Institute, Kyoto University, Kumatori, Osaka 590–0494, Japan

Fig. 1 Experimental scheme of ⁵⁷Fe-SRMS with single-line pure nuclear Bragg reflection. A PNBR from ⁵⁷FeBO₃ (95% ⁵⁷Fe), oscillating parallel to the reflection plane, filters a Doppler-shifted ⁵⁷Fe-Mössbauer radiation from SR X-rays and emits at a fixed beam position. An extremely narrow-bandwidth (~neV) is achieved by PNBR near the Néel point. Then, if a sample is placed at position A or B, the Mössbauer spectrum is measured by counting the reflected radiation as a function of velocity (*v*)

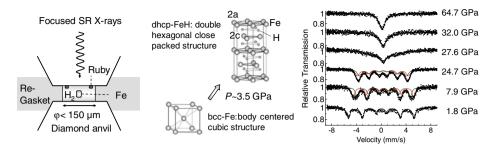


Fig. 2 Optical system for SR-⁵⁷Fe-Mössbauer spectrometer at SPring-8 (BL11XU). Optical devices (I, II and III) are used for high-pressure study with a diamond anvil cell (DAC), grazing incidence MS (GIMS) and γ -ray diffraction study, respectively. In this optics, NBM converts the σ -polarized SR X-rays into the π -polarized γ -rays

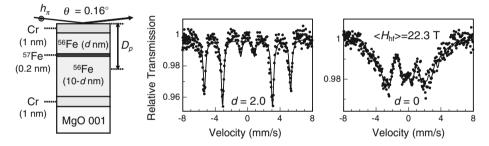

2 Optics and applications

Figure 2 shows the optics of the ⁵⁷Fe-SRMS spectrometer at SPring-8 (BL11XU) [3]. X-rays with a bandwidth of 2.5 meV at 14.4 keV, produced by a high resolution monochromator (HRM), are ultrafinely monochromatized to a 15.4 neV bandwidth by PNBR from a heated ⁵⁷FeBO₃ crystal in $H_{\text{ex}} = 150$ Oe. The resonance energy is varied as shown in Fig. 1. The counting rate is ~2.0 × 10⁴ Hz for ⁵⁷FeBO₃ 111 (~1.2 × 10⁴ Hz for ⁵⁷FeBO₃ 333).

As a transmission experiment, the SRMS of FeH was studied under high pressures up to 65 GPa at 300 K [4]. A tiny polycrystalline iron metal (⁵⁷Fe 95%, $\phi <$ 50 µm) and ruby pressure markers were enclosed in a DAC filled with liq. H₂. By using a focusing optics (Fig. 2), a good quality spectrum was obtained in a rather short time (2–5 h), whose results proved a great advantage in high pressure SRMS using a NBM in comparison with conventional MS using a ⁵⁷Co source (See Fig. 3). The spectra show that ferromagnetic dhcp-FeH, formed at P > 3.5 GPa, changes into a nonmagnetic high-pressure phase (P > 32.0 GPa). The origin is the pressure-induced 3d band broadening; it reduces the density of states at the Fermi level $D(E_f)$ so that the Stoner criterion for ferromagnetism is unsatisfied.

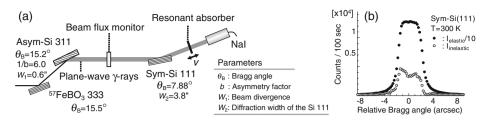


Fig. 3 Hydrogenation of Fe in a DAC and the MS spectra of FeH at high pressures up to 65 GPa. At P = 7.9 GPa, the spectrum shows two magnetic sextets due to two different Fe sites (2a, 2c) in a dhcp-FeH. The origin of the ferromagnetic state is the volume expansion and increase in 3d electron occupation due to the H₂ absorption, leading to the increase in $D(E_f)$ to satisfy the Stoner criterion. In contrast, at P > 32.0 GPa, a ferromagnetic-nonmagnetic transition is caused by the volume reduction, leading to the decrease in $D(E_f)$

Fig. 4 A principal structure of the prepared Cr/Fe thin films and the observed GIMS spectra. Under the conditions of electronic total external reflection, the penetration depth D_p of X-rays is a few nm, which is deeper than the ⁵⁷Fe probe layer position in the films. Then, the reflectivity is dominated by the contribution of much larger electronic scattering; the nuclear scattering contribution becomes negligible due to the relatively low ⁵⁷Fe content. As the result, the GIMS spectrum shows a MS absorption profile

In a grazing-incidence experiment, SRMS of a Cr/Fe film, with 1 monolayer (ML) ⁵⁷Fe probe atoms, was performed at 300 K without external field. Figure 4 shows the prepared Cr/Fe multilayer structures. The spectra of two different probe layer depths *d* (2.0 and 0.0 nm) were measured with a data acquisition time of 4.0 h. The probe beam was incident on the films at an angle $\theta = 0.16^{\circ}$, below the critical angle of electronic total reflection. Then, the GIMS spectrum gives a usual absorption profile as explained in Fig. 4. In fact, the spectrum for d = 2.0 nm shows a magnetic sextet of bulk α -Fe ($H_{\rm hf} \sim 33T$). In contrast, the result for d = 0 nm shows a broad hyperfine field distribution, whose average value $\langle H_{\rm hf} \rangle$ is less than that of d = 2.0 nm; the Cr/Fe interface is composed of flat regions separated by step sites on a scale of a few ML so that the magnetic hyperfine field at the ⁵⁷Fe nuclei is reduced upon an increase of neighboring Cr atoms [5]. The result verifies that the GIMS, combined with the probe layer method, is a useful tool for thin film study with atomic-scale resolution.

Fig. 5 a Experimental setup. b Elastic and inelastic scattering at a Si 111 reflection. The beam flux is monitored by a transparent type avalanche photo diode detector (transmittance \sim 90%). The resonant absorber of a mixture of fluoferrates exhibits a wide line of about 50 neV

As a γ -ray diffraction study, the thermal diffuse scattering (TDS) was measured at a Si Bragg reflection. The plane-wave γ -rays were produced by asymmetric Si 311, forming a parallel (±) setting with ⁵⁷FeBO₃ 333. The beam divergence $W_1 = 0.6''$ was much smaller than the diffraction width $W_2 = 3.8''$ of symmetric Si 111. In Fig. 5a, the Si 111 rocking curves were measured with on and off resonant conditions by a "Black" resonant absorber with a line width of ~50 neV. The elastic and inelastic (TDS) parts were determined according to ref. [6]. In Fig. 5b, the TDS curve, increasing near the Bragg angle, shows a small dip in the total reflection region for dynamical Bragg diffraction. The dip is a result of energy conservation; the reflected beam is quite strong and consequently little energy enters the crystal to produce TDS [7]. The result proves that the SR-based RSMR enables the TDS study at the Bragg peaks in a high angular resolution (~10⁻⁶ rad).

3 Conclusion

Today high-brilliant ⁵⁷Fe γ -rays are available at any bunch-mode of SR. This contrasts with time domain ⁵⁷Fe-SRMS, requiring a bunch-period over 100 ns. Energy domain ⁵⁷Fe-SRMS enters a new stage in both basic and practical studies.

Acknowledgements This work was supported by JST/CREST and partially by NEDO (Hydro-Star).

References

- Chumakov, A.I., Zelepukhin, M. V., Smirnov, G. V., van Bürck, U., Rüffer, R., Hollatz, R., Rüter, H.D., Gerdau, E.: Phys. Rev. B 41, 9545–1547 (1990)
- Smirnov, G.V., van Bürck, U., Chumakov, A.I., Baron, A.Q.R., Rüffer, R.: Phys. Rev. B 55, 5811–5815 (1997)
- Mitsui, T., Hirao, N., Ohishi, Y., Masuda, R., Nakamura, Y., Enoki, H., Sakaki, K., Seto, M.: J. Synchrotron Radiat. 16, 723–729 (2009)
- 4. Mitsui, T., Hirao, N.: Mater. Res. Soc. Symp. Proc. 1262, W06-09 (2010)
- Landes, J., Sauer, Ch., Brand, R.A., Zinn, W., Mantl, S., Kajcsos, Zs.: J. Magn. Magn. Mater. 86, 71–77 (1990)
- 6. O'Connor, D.A., Butt, N.M.: Phys. Lett. 7, 233–235 (1963)
- 7. Annaka, S., Kikuta, S., Kohra, K.: J. Phys. Soc. Jpn. 21, 1559–1564 (1966)