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Abstract We investigated the paleo-redox change across the Triassic-Jurassic
(T-J) boundary (∼200 Ma) and the Early Toarcian oceanic anoxic event (T-OAE;
∼183 Ma) recorded in the Upper Triassic to Lower Jurassic pelagic deep-sea cherts
in the Inuyama area, Central Japan. The present 57Fe Mössbauer spectroscopic
analysis for these cherts identified five iron species, i.e., hematite (α-Fe2O3), pyrite
(FeS2), paramagnetic Fe3+, and two paramagnetic Fe2+ with different quadrupole
splittings. The occurrence of hematite and pyrite in deep-sea cherts essentially
indicates primary oxidizing and reducing depositional conditions, respectively. The
results confirmed that oxidizing conditions persisted in deep-sea across the T-J
boundary. In contrast, across the T-OAE, deep-sea environment shifted to reducing
conditions. The first appearance of the gray pyrite-bearing chert marked the onset
of the deep-sea oxygen-depletion in the middle Pliensbachian, i.e., clearly before the
shallow-sea T-OAE.
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1 Introduction

Pelagic deep-sea cherts in ancient accretionary complexes are useful to reconstruct
oceanic paleo-environments, because pre-Jurassic deep-sea floors have been lost
from the Earth’s surface by the oceanic subduction. Accessory iron-bearing minerals
in deep-sea cherts, such as hematite and pyrite, have been used as redox indicators
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Fig. 1 Mössbauer spectra of
the analyzed cherts at
Katsuyama, Central Japan.
KA1, TOA5, and TOA31
are representative of red,
greenish-gray, and gray cherts,
respectively
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for ancient deep-sea environments, as in the case of the Permian-Triassic boundary
Superanoxia [1, 2]. In order to analyze paleo-redox history across the Triassic-
Jurassic (T-J) boundary (∼200 Ma) and the Early Toarcian Oceanic Anoxic Event
(T-OAE; ∼183 Ma), this study examined the Mössbauer spectra of the Upper
Triassic to Lower Jurassic deep-sea cherts in the Inuyama area, Central Japan.

2 Sample and method

The Upper Triassic to Lower Jurassic pelagic deep-sea cherts at the Katsuyama
section in Inuyama record the Triassic-Jurassic boundary and the T-OAE intervals
[3–5]. The T-J boundary lies in the red cherts, whereas the T-OAE interval lies in
organic-rich black cherts above the grayish cherts. Chert samples were prepared
following the same procedure as previous studies [2, 6]. Mössbauer spectra were
measured with an Austin Science S-600 Mössbauer spectrometer using a 1.11 GBq
57Co/Rh source at room temperature (293 K). Mössbauer spectra were fitted by
a least-square method with restrictions of intensity and half width of peaks. All
doublets were treated as symmetric. Peak positions of pyrite were constrained as
in previous studies [2, 6]. The presence of pyrite crystals was also checked under the
microscope.
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Fig. 2 Stratigraphic column showing the color and the iron-species composition of the Upper
Triassic to Lower Jurassic pelagic deep-sea cherts at Katsuyama, Central Japan. * shows white
massive chert. Radiolarian assemblage-zones are from [4, 5]
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3 Results and discussion

The Mössbauer analysis for 45 chert samples identified five iron species from the
analyzed deep-sea cherts (Fig. 1); hematite (α-Fe2O3), pyrite (FeS2), paramagnetic
Fe3+(high spin; h.s.), and two types of paramagnetic Fe2+(h.s.), i.e., Fe2+(outer)
with larger quadrupole splitting (QS) and Fe2+(inner) with smaller QS. Red cherts
contain hematite, Fe3+(h.s.), Fe2+(outer), and occasionally Fe2+(inner), suggesting
their primary deposition in oxidizing conditions. The grayish colored cherts are clas-
sified into two groups; i.e. ones with pyrite, Fe2+(outer), and occasionally Fe3+(h.s.),
and the others mainly with Fe2+(outer) and some Fe3+(h.s.) without pyrite. The
former group with framboidal pyrites was likely deposited primarily under reducing
conditions, whereas the latter group without pyrite was likely altered from primary
hematite-bearing red cherts [6]. Fe3+(h.s.) and Fe2+(outer) are likely included in clay
minerals such as illite or chlorite. Fe2+(inner) may be contained in siderite (FeCO3)-
like amorphous mineral that is derived from hematite by the post-depositional
alteration.

4 Paleo-redox history

Figure 2 shows the secular change of paleo-redox in the studied Upper Triassic to
Lower Jurassic deep-sea cherts. As for the T-J boundary, consistent occurrence of
the red hematite-bearing cherts (TJ1–22) suggests that the deep-sea environment
remained in oxidizing condition across the T-J boundary. In contrast, the mid-
Pliensbachian to Toarcian interval (∼4 m thick) consists of the framboidal pyrite-
bearing gray cherts (TOA6–36), suggesting their deposition under reducing con-
ditions. In addition, organic-rich black cherts (TOA30–30.8) corresponding to the
shallow-sea T-OAE occur in the middle of this interval. The greenish-gray cherts
(TOA1–5, 37), immediately below and above the reducing interval, contain mainly
Fe2+(outer) without pyrite nor hematite. They represent altered parts from the
primary hematite-bearing cherts, in accordance with a recent study [6]. The onset
of the reducing condition in deep-sea is marked by the first appearance of the gray
pyrite-bearing chert (TOA6), lying ∼3.5 m below the T-OAE black cherts (TOA30–
30.8), at the Hsuum mulleri-Trillus elkhornensis (Radiolaria) Zone [4, 5], i.e. in the
Lower Pliensbachian. This indicates that the deep-sea environment changed from
oxidizing to reducing clearly before the shallow-sea T-OAE, and persisted in the
reducing condition much longer than the shallow-sea environment.
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