In-beam Mössbauer spectra for ⁵⁷Mn implanted sulfur hexafluoride

Yasuhiro Yamada¹ · Yukiko Sato¹ · Yoshio Kobayashi^{2,3} · Takatoshi Ando² · Noriko Takahama² · Kanako Some² · Masami Sato² · Mototugu Mihara⁴ · M. Kenya Kubo⁵ · Wataru Sato⁶ · Jun Miyazaki⁷ · Takashi Nagatomo³ · Junji Kobayashi⁵ · Atsushi Okazawa⁸ · Shinji Sato⁹ · Atsushi Kitagawa⁹

Published online: 10 February 2020 © Springer Nature Switzerland AG 2019

Abstract

To investigate the interactions of ⁵⁷Fe atoms with sulfur hexafluoride SF₆ molecules, in-beam Mössbauer spectra were measured for ⁵⁷Mn implanted SF₆ at 9 K and 65 K. Isolated ⁵⁷Fe atoms or ions produced by β -decay were not trapped within the SF₆ matrix. At 9 K, monomeric FeF₂ and FeF₃ molecules were produced by reaction of ⁵⁷Fe with F atoms released by decomposition of the SF₆ molecules. When the temperature of the SF₆ solid was increased to 65 K, FeF₄ was formed in addition to FeF₂ and FeF₃. Density functional calculations were performed to confirm the assignments of the candidate species identified in the Mössbauer spectra.

Keywords In-beam Mössbauer spectroscopy · Manganese-57 · Sulfur hexafluoride · Iron fluoride · Density functional calculations

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China Edited by Tao Zhang, Junhu Wang and Xiaodong Wang

Yasuhiro Yamada yyasu@rs.kagu.tus.ac.jp

- ¹ Department of Chemistry, Tokyo University of Science, Tokyo, Japan
- ² Graduate School of Engineering Science, University of Electro-Communications, Chofu, Japan
- ³ Nishina Center for Accelerator-Based Science, RIKEN, Tokyo, Japan
- ⁴ Graduate School of Science, Osaka University, Suita, Japan
- ⁵ College of Liberal Arts, International Christian University, Mitaka, Japan
- ⁶ Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
- ⁷ Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Kanazawa, Japan
- ⁸ Department of Basic Science, The University of Tokyo, Tokyo, Japan
- ⁹ National Institute of Radiological Sciences, Chiba, Japan

1 Introduction

In-beam Mössbauer spectroscopy using short-lived ⁵⁷Mn nuclei is a useful tool to study novel reactions in a solid material. When ⁵⁷Mn is implanted into hard solid materials such as ionic crystals, the ⁵⁷Fe atoms produced by β-decay of ⁵⁷Mn serve as a probe for lattice defects or local magnetic structural anomalies, which, in turn, reflect inter-actions with the surrounding host material [1]. However, when ⁵⁷Mn is implanted into lowtemperature solids comprising reactive molecules, ⁵⁷Fe compounds may be trapped in the solid after reactions with the surrounding matrix. For instance, implantation of ⁵⁷Mn into ice resulted in the formation of $Fe(H_2O)_4^{2+}$ and $Fe(OH)(H_2O)_3^{+}$, the new species being trapped in the ice lattice [2]. Also, when ⁵⁷Mn was implanted into low-temperature inert solids, single ⁵⁷Fe atoms or ions may be trapped in the matrix, and the chemical state of the ⁵⁷Fe atom after β -decay of ⁵⁷Mn in a solid Ar matrix was found to be Fe⁺ with a 3d⁷ electronic configuration [3]. Sulfur hexafluoride (SF_6) is generally considered to be inert and stable, but the molecule releases F atoms as a result of reaction with highly energetic particles. Previously, we reported a study on matrix isolated iron fluorides produced by gas-phase reaction of laser-evaporated Fe atoms with SF_6 [4]. The products of the reaction were isolated in a low-temperature solid matrix and the Mössbauer spectra indicated that Fe_2F_6 molecules were produced in a pure SF_6 matrix, whereas FeF_3 and Fe₂F₄ were produced in a diluted SF₆/Ar matrix. Further, the dimeric species Fe₂F₆ and Fe_2F_4 were abundant and the monomeric Fe_3 species was a minor product of the gasphase reactions.

In this study, the reactions induced by implantation of 57 Mn into solid SF₆ at low temperatures were investigated.

2 Experimental

The heavy iron synchrotron accelerator facility (HIMAC) at the National Institute of Radio logical Science (NIRS, Chiba, Japan) was used to perform the experiments. The ⁵⁷Mn nuclei were produced by a projectile fragmentation reaction of the primary beam of ⁵⁸Fe ions with a ⁹Be target. A beam pulse of 1.2×10^6 particles was generated at 0.3 Hz and with a duration of 250 ms. The ⁵⁷Mn/SF₆ mixture ratio was about 10^{-12} , so that all the ⁵⁷Mn atoms were isolated without any chance of dimer formation. A parallel-plate avalanche counter was employed as the detector, and noise was minimized by use of the β - γ anti-coincidence method [5]. A solid sample of SF₆ was prepared by introducing SF₆ gas via a flow controller onto a brass plate cooled to 9 K using a vibration-isolated pulse-tube He refrigerator. In-beam Mössbauer spectra for ⁵⁷Mn implanted into solid SF₆ were measured at 9 K and 65 K; the measurement times for the spectra were 18.5 and 22.8 h, respectively. The sign of the isomer shift δ values was the reverse of that normally obtained for conventional Mössbauer absorption spectra.

Density functional calculations were performed using the ORCA program [6, 7] to confirm the assignments of the species observed in the experiment. The hybrid functional Beck three parameter Lee-Yang-Parr (B3LYP) and the Ahlrichs triple-zeta valence basis sets with polarization functions (TZVP) and auxiliary basis (SARC/J) were employed for the calculation. To estimate the Mössbauer parameters, the core properties basis set CP(PPP) was employed for describing Fe atoms using calibration parameters reported elsewhere [8, 9].

3 Results and discussion

3.1 Mössbauer spectra

The in-beam Mössbauer spectrum for ⁵⁷Mn implanted into solid SF₆ at 9 K is shown in Fig. 1a. The spectrum was fitted by a combination of a singlet (**A**) and a doublet (**B**) (Table 1). When the ⁵⁷Mn was implanted into an inert noble-gasmatrix (Ar [3] or Xe [10]), the ⁵⁷Fe atoms after β -decay of ⁵⁷Mn were stabilized as single Fe atoms (3d⁶4s²) or Fe⁺ cations (3d⁷ or 3d⁶4s¹). On the assumption that SF₆ is an inert matrix, the spectrum of the ⁵⁷Fe atom after β -decay of ⁵⁷Mn should be similar to the spectra observed in the case of inert noble gas matrices. However, the spectra for the species observed in the present experiment had very different Mössbauer parameters from those for Fe or Fe⁺. The isomer shift for species **A** ($\delta = -0.81(2)$ mm/s) was attributed to the high-spin divalent Fe²⁺ species. It is speculated that SF₆ was decomposed by reduction of the implanted ⁵⁷Mnⁿ⁺ cations such that F atoms were released and reaction with Fe atoms produced FeF₂. Species **A** was assigned as FeF₂, despite the fact that Mössbauer experimental data for FeF₂ isolated in an inert matrix have not been reported. Another species **B** ($\delta = -0.56(3)$ mm/s; $\Delta E_q = 3.15(6)$ mm/s) was assigned as FeF₃. The monomeric FeF₃ molecule has been reported [4] and the Mössbauer parameters obtained in this study were similar to the literature values. The aforementioned assignments were confirmed by density functional calculations as described later.

The Mössbauer spectrum was also measured at 65 K (Fig. 1b). The intensity of the peak decreased to 59% of that measured at 9 K due to the decrease of the recoil free fraction of soft

Fig. 1 In-beam Mössbauer spectra for 57 Mn implanted into solid SF₆ at (a) 9 K and (b) 65 K. The blue, red, and green lines denote singlet A, doublet B, and doublet C, respectively

Temp. (K)		δ (mm/s)	$\Delta E_{\rm Q} ~({\rm mm/s})$	Γ (mm/s)	Area Int.
9	А	-0.81(2)	_	1.1(1)	66%
	В	-0.56(3)	3.15(6)	1.0(1)	34%
65	А	-0.81*	-	1.3(2) [†]	21%
	В	-0.56^{*}	3.15*	1.3(2)†	39%
	С	0.1(2)	0.8(3)	1.3(2)†	40%

Table 1 Mössbauer parameters for Fe implanted SF₆

* The δ and $\Delta E_{\rm Q}$ parameters were fixed at the value measured at 9 K

[†] The Γ values for A, B, and C were assumed to have the same value

SF₆ at the higher temperature. It was difficult to deconvolute the spectrum as it consisted of several components with broad peaks. Therefore, we fitted the spectrum by fixing the Mössbauer parameters for FeF₂ and FeF₃ (δ and ΔE_q values measured at 9 K ignoring the second-order Doppler shifts) and assuming that the three components had the same peak widths Γ . As a result, a new doublet, species C, as well as FeF₂ and FeF₃ were found in the fitted spectrum (Table 1). The intensity of the FeF₃ peak was larger than that of the FeF₂ peak at 65 K, while the reverse was true at 9 K. Species C was found to be the major product (40%) at 65 K and production of this species may have been related to annealing effects whereby thermally stable species would be stabilized at the higher temperature. Also, the enhanced diffusion of F atoms in the SF₆ lattice at the higher temperature might have affected the formation and stability of species C. The isomer shift value for species C was in the same region as that for tetravalent Fe⁴⁺, so that species C was assigned as FeF₄.

3.2 Density functional calculations

Density functional calculations for candidate species observed in the Mössbauer spectra were performed. Calculations for the FeF_n (n = 1 to 6) species were carried out using B3LYP/TZVP and the results are listed in Table 2. The sign of the calculated isomer shift δ values is reversed compared to the values observed for conventional Mössbauer absorption spectra. The optimized structures for FeF₂, FeF₃ and FeF₄ are shown in Fig. 2. The geometries of the species were optimized and the stable structures were found to have high-spin states. The FeF₂ species had an S = 4/2 ground state with a linear structure ($D_{\infty h}$), and state with a linear δ and ΔE_q values were in good agreement with the experimental values. Though the Mössbauer spectra of monomeric FeCl₂ and FeBr₂ in low-temperature Ar matrices have been reported to possess small ΔE_q values [11], the density functional calculations indicated that FeF₂ had a very small ΔE_q value. To check the effects of the surrounding SF₆ lattice, the calculation for a FeF₂@(SF₆)₁₄ cluster (where FeF₂ is a substituent in the SF₆ lattice) was performed, the SF₆ lattice structure being taken from the solid structure reported [12] and where FeF₂ was a

Species		S	δ (mm/s)	$\Delta E_{\rm Q} \ ({\rm mm/s})$
FeF		5/2	-0.45	1.15
FeF ₂	А	4/2	-0.86	0.07
FeF ₃	В	5/2	-0.57	4.08
FeF ₄	С	4/2	-0.08	0.50
FeF ₅		3/2	+0.22	2.16
FeF ₆		2/2	+0.24	-1.36

Table 2 Calculated Mössbauer parameters using B3LYP/TZVP/CP(PPP)

Fig. 2 Geometries of iron fluoride species (FeF_2 , FeF_3 and FeF_4) calculated by B3LYP/TZVP. Bond lengths are indicated in Angstroms and angles in degrees

substituent of SF₆. The calculated Mössbauer parameters for the FeF₂@(SF₆)₁₄ cluster ($\delta = -0.86$ mm/s and $\Delta E_q = -0.03$) were almost identical to those for a single FeF₂ molecule, which indicates that the SF₆ lattice had very little effect on the environment of the Fe atom in FeF₂. The optimized structure of FeF₃ had a plane triangular configuration (D_{3h}) with an S = 5/2 ground state. The calculated and observed δ values for FeF₃ were in quite good agreement with the calculated ΔE_q value, being slightly larger than the observed value.

The optimized structure of FeF₄ had D_{2d} symmetry with a S = 4/2 spin state, but the ΔE_q values was smaller than that observed in the spectrum, while the discrepancy of the ΔE_q values was smaller than the observed half-width Γ . The effects of the surrounding SF₆ lattice on FeF₃ and FeF₄ were also checked by calculating the Mössbauer parameters for FeF₃@(SF₆)₁₄ and FeF₄@(SF₆)₁₄ clusters, respectively. The calculated parameters for the clusters were identical with those for the isolated FeF3 and FeF₄ molecules.

3.3 Formation reaction

In the experiment, highly charged ⁵⁷Mnⁿ⁺ ions were implanted into the SF₆ solid. The ⁵⁷Mnⁿ⁺ ions underwent reduction to stabilize the species via a charge transfer process between SF₆ and ⁵⁷Mnⁿ⁺. The first ionization potential for SF₆ is I^1 SF₆ = 15.32 eV. The first and second ionization potentials for Mn are I^1_{Mn} =7.44 eV and I^2_{Mn} = 15.65 eV, respectively; therefore, ⁵⁷Mnⁿ⁺ ions implanted into the SF₆ matrix underwent reduction, forming ⁵⁷Mn+ ions if charge transfer from SF₆ was the main process. Then, β-decay of ⁵⁷Mn⁺ ions produced ⁵⁷Fe²⁺ ions. Next, the ⁵⁷Fe²⁺ ions were reduced by charge transfer from the surrounding SF₆, the first and second ionization potentials for Fe being I^1_{Fe} =7.91 eV and I^2 Fe = 16.20 eV, respectively. The charge transfer process would have produced ⁵⁷Fe²⁺ cations. Ionization of SF₆ molecules in the gas phase has been studied extensively [13], and it has been found that the production of SF₆⁺ cations leads to numerous dissociative products [14]. Under the present experimental conditions, the ionized SF₆⁺ cations would have led to the production and trapping of FeF₂ and FeF₃ species in the SF₆ matrix.

Previous studies of laser-evaporated Fe atoms in an SF₆ atmosphere [4] did not result in the production of monomeric FeF₂ molecules; instead, the main products of the gas-phase reaction were dimeric Fe₂F₆ and Fe₂F₄ species. In the present study, however, the use of in-beam ⁵⁷Mn Mössbauer spectroscopy at 9 K provided very dilute conditions, such that monomeric FeF₂ and FeF₃ species were produced. When the temperature of SF₆ was increased to 65 K, the migration of F atoms within the SF₆ solid was enhanced, resulting in FeF₄ also being produced.

4 Conclusion

In-beam Mössbauer spectra for implantation of ⁵⁷Mn into solid SF₆ were measured at temperatures of 9 K and 65 K. A single ⁵⁷Fe atom or ion was not trapped in the SF₆ matrix despite the fact that SF₆ is generally considered to be an inert molecule. Monomeric iron fluoride molecules, FeF₂ and FeF₃, were produced at 9 K by reaction of Fe with the F atoms released by the SF₆ molecules. When the temperature of SF₆ was increased to 65 K, new species assigned to FeF₄ were produced. Density functional calculations were performed to confirm the assignments, and the calculated Mössbauer parameters were in agreement with the experimental results. The calculations indicated that the FeF₂, FeF₃ and FeF₄ species had linear (D_{∞h}), triangular (D_{3h}) and tetrahedral (D_{2d}) structures, respectively.

References

- Kubo, M.K., Kobayashi, Y., Yamada, Y., Mihara, M., Nagatomo, T., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: In-beam Mössbauer spectroscopy of ⁵⁷Fe/⁵⁷Mn in MgO and NaF at Heavy-Ion Medical Accelerator in Chiba. Rev. Sci. Instrum. 85, 02C310–02C314 (2014)
- Yamada, Y., Sato, Y., Kobayashi, Y., Mihara, M., Kubo, M.K., Sato, W., Miyazaki, J., Nagatomo, T., Tanigawa, S., Natori, D., Kobayashi, J., Sato, S., Kitagawa, A.: In-beam Mössbauer spectra of ⁵⁷Mn implanted into ice. Hyperfine Interact. 239, 25 (2018)
- Yamada, Y., Kobayashi, Y., Kubo, M.K., Mihara, M., Nagatomo, T., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: In-beam Mössbauer spectra of ⁵⁷Mn implanted into low-temperature solid Ar. Chem. Phys. Lett. 567, 14–17 (2013)
- Yamada, Y., Katsumata, K.: Moessbauer Study of Matrix Isolated Iron Fluorides Produced by a Reaction of Laser-Evaporated Iron Atom and Sulfur Hexafluoride. Chemistry Letters. 746–747 (2000)
- Nagatomo, T., Kobayashi, Y., Kubo, M.K., Yamada, Y., Mihara, M., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: Remarkable improvement of the signal-to-noise ratio of ⁵⁷Mn/⁵⁷Fe in-beam Mössbauer spectroscopy. Nucl. Inst. Methods Phys. Res. B. 269, 455–459 (2011)
- Sandala, G.M., Hopmann, K.H., Ghosh, A., Noodleman, L.: Calibration of DFT Functionals for the prediction of ⁵⁷Fe Mössbauer spectral parameters in Iron-Nitrosyl and Iron-sulfur complexes: accurate geometries prove essential. J. Chem. Theory Comput. 7, 3232–3247 (2011)
- 7. Neese, F.: The ORCA program system. WIREs Comput Mol Sci. 2, 73-78 (2011)
- 8. Neese, F.: Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord. Chem. Rev. **253**, 526–563 (2009)
- Römelt, M., Ye, S., Neese, F.: Calibration of modern density functional theory methods for the prediction of ⁵⁷Fe Mössbauer isomer shifts: meta-GGA and double-hybrid Functionals. Inorg. Chem. 48, 784–785 (2009)
- Yamada, Y., Kobayashi, Y., Kubo, M.K., Mihara, M., Nagatomo, T., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A.: In-beam Mössbauer study of ⁵⁷Mn implanted into a low-temperature xenon. Hyperfine Interact. 226, 35–40 (2014)
- Litterst, F.J., Schichl, A., Physics, G.K.C.: 1978: Mössbauer study of rare-gas matrix-isolated ⁵⁷FeCl₂, ⁵⁷FeBr₂ and ⁵⁷Fe₂C₁₆. Chem. Phys. 28, 89–95 (1978)
- 12. Dove, M.T., Powell, B.M., Pawley, G.S., Bartell, L.S.: Monoclinic phase of SF₆ and the orientational ordering transition. Mol. Phys. **65**, 353–358 (1988)
- Yencha, A.J., Lopes, M.C.A., Thompson, D.B., King, G.C.: Threshold photoelectron spectroscopy in the innervalence ionization region and photo-double ionization of SF₆. J. Phys. B Atomic Mol. Phys. 33, 945– 954 (2000)
- Creasey, J.C., Jones, H.M., Smith, D.M., physics, R.T.C., 1993: Fragmentation of valence electronic states of CF₄⁺ and SF₆⁺ studied by threshold photoelectron-photoion coincidence spectroscopy. Chem. Phys. 174, 441–452 (1993)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.