Current status of iron-based superconductors

Yoichi Kamihara

© Springer Science+Business Media B.V. 2012

Abstract Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO_{1-x}F_x. The very large H_{c2} of iron-based superconductors attract us to attempts at applications.

Keywords Iron-based superconductors • Applications • ⁵⁷Fe Mössbauer effect • Critical magnetic field • Superconducting critical current density

1 Iron-based superconductors

Although iron and iron-based compounds are representative ferromagnetic and/or ferrimagnetic materials, a considerable number of iron-based compounds have been reported as exhibiting superconductivity. Figure 1 shows superconductors containing itinerant Fe 3d electrons which had been reported before 2005. Intermetallic compounds [U₆Fe, Th₇Fe, Zr₂Fe, R₂Fe₃Si₅ (R = Sc, Y, Lu, and Tm)] and rareerth filled skutterudites [LnFe₄P₁₂ (Ln = La, Y)], whose superconducting transition temperatures ranged from 1.8 to 7 K, show Pauli paramagnetic behavior in the

Y. Kamihara (⊠)

Y. Kamihara

Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan e-mail: kamihara_yoichi@appi.keio.ac.jp

TRIP, Japan Science and Technology Agency, Sanban-cho bldg, 5, Sanban-cho, Chiyoda, Tokyo, 102-0075, Japan

Fig. 1 Crystallographic structures of iron based superconductors. (a) ε -Fe [1], (b) U₆Fe [2], (c) Th₇Fe [3], (d) Zr₂Fe [4], (e) R₂Fe₃Si₅ (R = Sc, Y, Tm, and Lu) [5–9], (f) RFe₄P₁₂ (R = La, Y) [10, 11]

normal conducting states, indicating that the magnetic moments of the iron are quenched. The quench of the magnetic moment is also observed in a high-pressure phase of elementary iron (ε -iron), which shows superconducting transition at $\sim 2 \text{ K}$ [1].

Since the first discovery of an iron-based superconductor, $LnFePnO_{1-x}F_x$ (Ln: Rare earth ions, Pn: Pnicogen ions) [12, 13] many researchers focus on this material as a candidate for a new high- T_c superconductor. After the first report, series of iron-based superconducting materials have been reported. Figure 2 shows crystallographic phases of iron-based high- T_c superconducting materials. These superconducting materials contain iron: a typical Mössbauer nuclide. T_c of iron-based superconductors reached at 55 K in F-doped SmFeAsO [33].

Fig. 2 Crystallographic structures of iron-based high T_c superconductors [14, 15]. (a) FeCh (Ch: S, Se, Te), 11-type [16], (b) AFePn (A: Li, Na, Pn = P, As), 111-type [17–19], (c) ReFePnO (Re: rare earth ions) / AeFePnF (Ae: Alkaline earth ion), 1111-type [12, 13, 20], (d) AFe₂Pn₂, AeFe₂Pn₂, EuFe₂Pn₂, AFe₂Se₂, 122-type [21–24], (e) Ae₂TMFePnO₃ (TM = Mg, Al, Ti, V), 21113-type [25–28], (f) Ae₄TM₃Fe₂As₂O₈ [29], * denotes homologus structures. (g) (h) Ce-Fe-Pt-As [30–32]

Fig. 3 Crystal structure (a) and schematic electrical conduction (b) of SmFeAsO

2 Magnetic and electronic phase diagram for iron-based high-T_c superconductors

Details for coexistence or not-coexistence of magnetic and superconducting phases were important issues for iron-based superconductors in 2008–2010 [34, 35]. In general, it is very difficult to measure element-specific magnetic moments in a compound containing plural magnetic element using DC magnetization measurement, heat capacity, and μ -SR measurement. In contrast, Mössbauer spectroscopy (MS) and nuclear resonant forward-scattering (NRFS) provide us information on the magnetic hyperfine field at nuclei position. MS and NRFS are also effective to distinguish main phase's magnetic ordering from impurity's magnetic ordering using isomer shift values like Knight shifts values in nuclear magnetic resonance (NMR). MS and NRFS are very good element-specific magnetic measurement methods. Indeed, magnetic properties of SmFeAsO_{1-x}F_x are demonstrated by using ⁵⁷Fe MS and ¹⁴⁹Sm NRFS [36].

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		от поп-разеи шёл-	r c super comun	5 (· · 2			į		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chemical	Shape	$T_{\rm c}$ (K)	$J_{\rm c}$ (A/cm ²)			$\mu_0 H_{c2}$ (T)	Remarks	Refs.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	composition			Transport	Intergrain	Intragrain			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	LaFePO	Poly	2-5.4	I	I	I	0.01 - 0.1	I	[12, 43]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$LaFePO_{0.94}F_{0.06}$	Poly	6.1	I	1.3×10^4	$1.3 imes 10^4$	~ 1	1.83 K	[44]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	LaFePO	Single	6.6	I	I	I	4	2 K, H ab	[45]
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	LaFePO _{1-d}	Single	7.8	I	I	I	I	I	[45]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$LaFeAsO_{1-x}F_x$	Poly	26	I	I	I	I	I	[13]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Poly	25	I	I	I	$60 \bot ab, 40//ab$	$0 \mathrm{K}$	[46]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Single	11.5	I	I	I	I	I	[47]
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$		Wire	20	I	I	$1.0 imes 10^3$	I	5 K	[48]
$NdFcAsO_{1-x}F_{x} Film 45 - - - - - - - - - $		Film(Poly)	24	$1.0 imes 10^3$	I	I	120	2 K	[49]
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	$NdFeAsO_{1-x}F_x$	Film	45	I	I	I	I	PLD	[50]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Single	37	I	I	$1.0 imes 10^5$	I	5 K	[51]
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$		Single	46	I	I	I	200-300	$0 \mathrm{K}$	[52]
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$		Poly	47	I	2.1×10^3	$6.7 imes 10^{6}$	I	5 K	[53]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$SmFeAsO_{1-x}F_x$	Film	56.2	$1.0 imes 10^6$	I	I	I	MBE	[54]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Single	54	2.0×10^{6}	I	I	200-300	$0 \mathrm{K}$	[55]
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$		Poly	52	I	I	1.1×10^{5}	I	5 K	[56]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Wire	43	4.0×10^{3}	I	I	I	4.2 K	[57]
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$		Tape	43	2.7×10^3	I	I	I	4.2 K	[58]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SmFeAsO _{1-d}	Poly	53	I	$4.0 imes 10^3$	7.3×10^{6}	I	2 K	[53]
Single 37 - 2.5×10^6 - $5 K$ Single 35.9 4.7×10^6 - $2 K$ Single 28.2 2.0×10^4 - $2 K$ Poly 35 - 2.0×10^4 2.0×10^6 - $6 K$ Wire 35 1.0 $\times 10^4$ $42 F$	$Ba_{1-x}K_xFe_2As_2$	Film	36.9	I	I	I	I	MBE	[59]
Single 35.9 4.7×10^{6} - 2 K Single 28.2 70 0 K Poly 35 - 2.0×10^{4} 2.0×10^{6} - 5 K Wire 35 1.0×10^{4} 4.2 F		Single	37	I	I	$2.5 imes 10^6$	I	5 K	[09]
Single 28.2 - - 70 0 K Poly 35 - 2.0×10^4 2.0×10^6 - $5 K$ Wire 35 1.0 $\times 10^4$ - - 42 F		Single	35.9	I	I	$4.7 imes 10^6$	I	$2 \mathrm{K}$	[61]
Poly 35 - 2.0×10^4 2.0×10^6 - 5 K Write 35 1.0×10^4 - $-$ 4.2 F		Single	28.2	I	I	I	70	$0 \mathrm{K}$	[62]
Wire 35 1.0×10 ⁴ 4.2 F		Poly	35	I	$2.0 imes 10^4$	2.0×10^{6}	I	5 K	[63]
		Wire	35	1.0×10^{4}	I	I	I	4.2 K	[64]

Chemical	Shape	$T_{\rm c}$ (K)	$J_{\rm c} ({\rm A/cm^2})$			$\mu_0 H_{c2} (T)$	Remarks	Refs.
composition			Transport	Intergrain	Intragrain			
Sr _{0.6} K _{0.4} Fe ₂ As ₂	Wire	35	$2.5 imes 10^4$	I	I	I	4.2 K	[65]
BaFe _{2-x} Co _x As ₂	Single	22	I	I	2.6×10^5	I	5 K	[66, 67]
	Single	22	I	I	I	$50 \bot ab, 55//ab$	$0 \mathrm{K}$	[68]
	Film	22.15	4.5×10^{6}	I	I	I	4.2 K	[69]
	Film	22	4.0×10^{6}	I	I	I	4 K	[70]
	Film on tape	21.3	$3.5 imes 10^6$	I	I	I	2 K	[71]
SrFe2-xCoxAs2	Film	17.1	I	I	I	47	$0 \mathrm{K}$	[72]
	Film	17.6	$5.0 imes 10^5$	I	I	I	4.5 K	[73]
$\mathrm{FeSe}_{1+\mathrm{x}}$	Poly	6	I	I	I	$^{\sim}16.3$	$0 \mathrm{K}$	[16]
	Single	9.8	I	I	2.2×10^4	I	1.8 K	[74]
	Film	9	I	I	I	I	I	[75]
	Wire	11	3.8×10^2	I	I	I	I	[76]
$\mathrm{FeSe}_{0.25}\mathrm{Te}_{0.75}$	Poly	13.7	I	I	I	40-50	$1.4 \mathrm{K}$	[77]
FeSe _{0.5} Te _{0.5}	Film	16	$5.9 imes10^4$	I	I	I	$4.5 \mathrm{K}, 10 \mathrm{T}$	[78]
	Film	20.2	I	I	I	I	I	[62]
	Wire	10.5	2.3×10^2	I	I	I	4.2 K	[80]
Poly: polycrystalline tape: epitaxial thin f J_c in grain boundar	ε sample, Single: singlift if the sample single if and Γ_{cs} in this table are over in remarks. MRI	le crystals, Wire 2, Transport <i>J</i> _c : 2 onset of the m F. Molecular he	: superconducting J_c measured from lagnetic shielding ended agnetic shielding ended and and and and and and and and and an	wires, Film: poly- voltage drop mea effects or T_c midd	and/or single crys suring method, Ini le read from figur	talline thin film, Tape: tergrain J _c : J _c between es in cited references. ⁷	superconducting ta t grain boundary, In When J_c , H_{c2} are c	pe, Film on tragrain J _c : xtrapolated

Figure 3 shows crystallographic structure of SmFeAsO. Polycrystalline $SmFeAsO_{1-x}F_x$ samples were synthesized using two-step solid state reaction described elsewhere [36]. Purity of samples was checked by X-ray diffraction patterns using Cu K- α radiation. Resistivity and magnetization measurements, as well as by ⁵⁷Fe MS and ¹⁴⁹Sm NRFS spectroscopy, at various temperatures were performed to define superconducting, magnetic ordering temperatures. A magnetic phase diagram we have proposed is closer to that by Hess et al. [34] (Fig. 4a); that is long-range AF ordering of Fe (a static magnetism) does not persist in the superconducting regime. Such a relation between spin dynamics and SC is a common feature among $LnFeAsO_{1-x}F_x$ (Ln = La, Ce, Pr, Nd, and Sm). Our results indicate that the relation between the long range magnetic ordering and $T_{\rm c}$ of LnFeAsO_{1-x}F_x shows similar topology to that of copper-based high- $T_{\rm c}$ superconductors. If short range magnetic ordering [37, 38] and magnetic phase separation [39, 40] of Fe are excluded, macroscopic magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type demonstrated in Fig. 4. Present issues are microscopic, short-range-ordered, magnetic properties on a nanometer-range in iron-based high- T_c superconductors [41, 42].

3 Researches for applications of iron-based superconductors

Iron-based high T_c superconductors demonstrate very large upper critical magnetic fields (H_{c2}) which reach same extent compared with copper-based superconductors [81]. These attractive characteristics of iron-based superconductors triggered research into new iron-based superconductors as well as several attempts at applications. Table 1 shows transport critical current densities (J_c), and H_{c2} for several iron-based high- T_c superconductors.

4 Summary

Considerable number of iron-based high- T_c superconductors has been reported. If short range magnetic ordering and magnetic phase separation of Fe are excluded, magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Present issues between magnetism and superconductivity of iron-based superconductors are microscopic, short-range ordered, magnetic properties on a nanometer range. The very large H_{c2} of iron-based superconductors triggered research into several attempts at applications.

References

- 1. Shimizu, K., et al.: Nature 412, 316 (2001)
- 2. Chandrasekhar, B.S., Hulm, J.K.: J. Phys. Chem. Solids 7, 259 (1958)
- 3. Matthias, B.T., et al.: J. Phys. Chem. Solids 19, 130 (1961)
- 4. Havinga, E.E., et al.: J. Less-Common Met. 27, 169 (1972)
- 5. Braun, H.F.: Phys. Lett. A75, 386 (1980)
- 6. Vining, C.B., et al.: Phys. Rev. B27, 2800 (1983)
- 7. Braun, H.F.: Phys. Lett. A85, 372 (1981)
- 8. Vining C.B., Shelton, R.N.: Solid State Commun. 54, 53 (1985)

- 9. Schmidt, H., et al.: Phys. Rev. B53, 12389 (1996)
- 10. Meisner, G.P.: Physica, B + C 108, 763 (1981)
- 11. Shirotani, I., et al.: J. Phys.: Condens. Matter 15, S2201 (2003)
- 12. Kamihara, Y., et al.: J. Am. Chem. Soc. **128**, 10012 (2006)
- 13. Kamihara, Y., et al.: J. Am. Chem. Soc. 130, 3296 (2008)
- 14. Kamihara, Y., Hosono, H.: Denshi Zairyo 49, 18 (2010) (Japanese)
- 15. Kamihara, Y., Hosono, H.: Rev. High Press. Sci. Technol. 19, 97 (2009) (Japanese)
- 16. Hsu, F.C., et al.: Proc. Natl. Acad. Sci. U. S. A. 105, 14262 (2008)
- 17. Picher, M.J., et al.: Chem. Commun. (Cambridge) 45, 5918 (2008)
- 18. Tapp, J.H. et al.: Phys. Rev. **B78**, 060505 (2008)
- 19. Deng, Z., et al.: Europhys. Lett. 87, 37004 (2009)
- 20. Matsuishi, S., et al.: J. Am. Chem. Soc. 130, 14428 (2008)
- 21. Rotter, M., et al.: Phys. Rev. Lett. 101, 020503 (2008)
- 22. Rotter, M., et al.: Angew. Chem. Int. Ed. 47, 7949 (2008)
- 23. Jeevan, H.S., et al.: Phys. Rev. B 78, 092406 (2008)
- 24. Guo, J., et al.: Phys. Rev. B 82, 180520 (2010)
- 25. Ogino, H., et al.: Supercond. Sci. Technol. 22, 75008 (2008)
- 26. Zhu, X., et al.: Phys. Rev. B **79**, 220512 (2009)
- 27. Sato, S., et al.: Supercond. Sci. Technol. 23, 45001 (2010)
- 28. Shirage, P.M., et al.: Appl. Phys. Lett. 97, 172506 (2010)
- 29. Ogino, H., et al.: Appl. Phys. Express 3, 063103 (2010)
- 30. Kakiya, S., et al.: J. Phys. Soc. Jpn. 80, 093704 (2011)
- 31. Ni, N., et al.: Proc. Natl. Acad. Sci. 108, E1019 (2011)
- 32. Löhnert, C., et al.: Angew. Chem. Int. Ed. 50, 9195 (2011)
- 33. Ren, Z.A., et al.: Chin. Phys. Lett. 25, 2215 (2008)
- 34. Hess, C.A., et al.: Europhys. Lett. 87, 17005 (2009)
- 35. Drew, A.J., et al.: Nat. Mater. 8, 310 (2009)
- 36. Kamihara, Y., et al.: New J. Phys. 12, 033005 (2010)
- 37. Kitagawa, K., et al.: Phys. Rev. Lett. 103, 257002 (2009)
- 38. Goko, T., et al.: Phys. Rev. B 80, 024508 (2009)
- 39. Takeshita, S., et al.: J. Phys. Soc. Jpn. 77, 103703 (2008)
- 40. Takeshita, S., et al.: Phys. Rev. Lett. 103, 027002 (2009)
- 41. Shiroka, T., et al.: Phys. Rev. B 84, 195123 (2011)
- 42. Luetkens, H., et al.: Nat. Mater. 8, 305 (2009)
- 43. Kamihara, Y., et al.: Phys. Rev. B 77, 214515 (2008)
- 44. Tsuchiya, Y., et al.: Physica C **470**, S300 (2010)
- 45. Hamlin, J.J., et al.: J. Phys., Condens. Matter 20, 365220 (2008)
- 46. Hunte, F., et al.: Nature (London) **453**, 903 (2008)
- 47. Yan, J.Q., et al.: Appl. Phys. Lett. 95, 222504 (2009)
- 48. Gao, Z., et al.: Supercond. Sci. Technol. 21, 105024 (2008)
- 49. Haindl, S., et al.: Phys. Rev. Lett. 104, 077001 (2010)
- 50. Kawaguchi, T., et al.: Appl. Phys. Lett. 97, 042509 (2010)
- 51. van der Beek, C.J., et al.: Phys. Rev. B 81, 174517 (2010)
- 52. Jaroszynski, J., et al.: Phys. Rev. B 78, 174523 (2008)
- 53. Yamamoto, A., et al.: Supercond. Sci. Technol. 21, 095008 (2008)
- 54. Ueda, S., et al.: Appl. Phys. Lett. 99, 232505 (2011)
- 55. Moll, P.J.W., et al.: Nat. Mater. 9, 628 (2010)
- 56. Tamegai, T., et al.: Physica C469, 915 (2009)
- 57. Fujioka, M., et al.: Appl. Phys. Express 4, 063102 (2011)
- 58. Ma, Y., et al.: IEEE Trans. Appl. Supercond. 21, 2878 (2010)
- 59. Takeda, S., et al.: Appl. Phys. Express 3, 093101 (2010)
- 60. Wang, C., et al.: Supercond. Sci. Technol. 24, 065002 (2011)
- 61. Yang, H., et al.: Appl. Phys. Lett. 93, 142506 (2008)
- 62. Yuan, H.Q., et al.: Nature **457**, 565 (2009)
- 63. Wang, C., et al.: Appl. Phys. Lett. 98, 042508 (2011)
- 64. Togano, K., et al.: Appl. Phys. Express 4, 043101 (2011)
- 65. Gao, Z., et al.: Appl. Phys. Lett. 99, 242506 (2011)
- 66. Sefat, A. S., et al.: Phys. Rev. Lett. 101, 117004 (2008)
- 67. Prozorov, R., et al.: Phys. Rev. **B78**, 224506 (2008)
- 68. Kano, M., et al.: J. Phys. Soc. Jpn. 78, 084719 (2009)

- 69. Lee, S., et al.: Nat. Mater. 9, 397 (2010)
- 70. Katase, T., et al.: Appl. Phys. Express 3, 063101 (2010)
- 71. Katase, T., et al.: Appl. Phys. Lett. 98, 242510 (2011)
- 72. Baily, S.A., et al.: Phys. Rev. Lett. 102, 117004 (2009)
- 73. Maiorov, B., et al.: Supercond. Sci. Technol. 22, 125011 (2009)
- 74. Lei, H., et al.: Phys. Rev. B 84, 014520 (2011)
- 75. Wang, M.J., et al.: Phys. Rev. Lett. 103, 117002 (2009)
- 76. Ozaki, T., et al.: J. Appl. Phys. 111, 013912 (2012)
- 77. Kida, T., et al.: J. Phys. Soc. Jpn. 78, 113701 (2009)
- 78. Tsukada, I., et al.: Appl. Phys. Express 4, 053101 (2011)
- 79. Bellingeri, E., et al.: Appl. Phys. Lett. 96, 102512 (2010)
- 80. Ozaki, T., et al.: Supercond. Sci. Technol. 24, 105002 (2011)
- 81. Sekitani, T., et al.: Physica B: Condens. Matter 346-347, 319 (2004)