Local structure and water cleaning ability of iron oxide nanoparticles prepared by hydro-thermal reaction

Koya Shibano · Shiro Kubuki · Kazuhiko Akiyama · Zoltán Homonnay · Ernő Kuzmann · Stjepko Krehula · Mira Ristić · Tetsuaki Nishida

© Springer Science+Business Media Dordrecht 2013

Abstract Nanoparticles (NPs) of Fe₃O₄ and γ Fe₂O₃ synthesized by hydrothermal reaction were characterized by X-ray diffractometry (XRD), ⁵⁷Fe-Mössbauer spectroscopy and field emission scanning electron microscopy (FE-SEM). A decrease in concentration of methylene blue (MB) aqueous solution due to bulk Fe⁰-NP γ Fe₂O₃ mixture with the mass ratio of 3:7 was measured by ultraviolet-visible light absorption spectroscopy (UV-Vis). The Mössbauer spectrum of NP Fe₃O₄ prepared from hydrothermal reaction was composed of two sextets with absorption area (*A*), isomer shift (δ) and internal magnetic field (*H*_{int}) of 56.3 %, 0.34_{±0.03} mm s⁻¹ and 49.0_{±0.30} T for tetrahedral (*T*_d) Fe^{III}, and 43.7 %, 0.66_{±0.11} mm s⁻¹ and 44.0_{±0.71} T for octahedral (*O*_h) Fe^{II+III}. The Fe^{II}/Fe^{III} ratio was determined to be 0.280 for NP Fe₃O₄, giving 'x' of 0.124 in Fe_{3-x}O₄. These results show that NP Fe₃O₄ prepared by hydrothermal reaction was not regular but nonstoichiometric Fe₃O₄.

K. Shibano · S. Kubuki (⊠) · K. Akiyama

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachi-Oji, Tokyo 192-0397, Japan e-mail: kubuki@tmu.ac.jp

Z. Homonnay · E. Kuzmann Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmany P. s., 1/A, Budapest 1117, Hungary

S. Krehula · M. Ristić Division of Materials Chemistry, Ruđer Bošković Institute, P. O. Box 180, Zagreb 10002, Croatia

T. Nishida Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Kayanomori 11-6, Iizuka, Fukuoka 820-8555, Japan

Proceedings of the 32nd International Conference on the Applications of the Mössbauer Effect (ICAME 2013) held in Opatija, Croatia, 1–6 September 2013.

results were observed for XRD patterns of NP Fe_{3-x}O₄ indicating sharp intense peaks at 2 Θ of 30.2, 35.7 and 43.3° with a large linewidth of 0.44°, yielding the crystallite size of 29–37 nm from the Scherrer's equation. Iso-thermal annealing of NP Fe_{3-x}O₄ at 250 °C for 30 min resulted in the precipitation of NP γ Fe₂O₃ with δ of 0.33_{±0.03} mm s⁻¹ and H_{int} of 46.4_{±0.27} T due to magnetic tetrahedral Fe^{III}. The Debye temperature of NP Fe_{3-x}O₄ was respectively estimated to be 267_{±5.45} K for Fe^{III}(T_d) and 282_{±7.17} K for Fe^{II+III}(O_h), both of which were smaller than that obtained for bulk Fe₃O₄ of 280_{±4.15} K and 307_{±5.70} K, indicating that the chemical environment of iron of NPs is less rigid than that of the bulk compounds. A leaching test using methylene blue (MB) and mixture of bulk Fe⁰-NP γ Fe₂O₃(3:7) showed a remarkable decrease in MB concentration from 1.90 × 10⁻² to 9.49 × 10⁻⁴ mM for 24 h with the first order rate constant (k_{MB}) of 2.1 × 10⁻³ min⁻¹. This result verifies that MB decomposing ability is enhanced by using NP γ Fe₂O₃ compared with the k_{MB} of 1.1 × 10⁻⁴ min⁻¹ previously obtained from the leaching test using MB and bulk mixture of Fe⁰ – γ Fe₂O₃ (3:7).

Keywords Nano particle · Maghemite · Magnetite · Methylene blue · ⁵⁷Fe-Mössbauer spectroscopy · Debye temperature

1 Introduction

Ferrite nanoparticles attract much interest because they are applicable for environmental purification. For example, V-Ti co-doped magnetite decomposed methylene blue (MB) with the first order rate constant of 1.34 min⁻¹ by Fenton reaction [1]. On the other hand, Pathak et al. revealed that $Mg_xMn_{(1-x)}Fe_2O_4$ decomposed nitrobenzene in water by the photocatalytic effect [2]. However, there are several difficulties in quantitative evaluation of both the Fenton reaction and the photo-catalytic reaction. Our previous studies revealed that an industrially-produced Fe^{0} - $\gamma Fe_{2}O_{3}$ mixture decreased the concentration of trichloroethylene (TCE) in aqueous solution from 10 to 0.5 mg L^{-1} after 7-day leaching [3]. Decomposition of organic compounds by applying an Fe^0 - γFe_2O_3 mixture is superior to that of Fenton reaction and photo-catalytic reaction because the condition control is quite simple. It can be expected that toxic organic compounds like TCE could be decomposed more effectively by $Fe^{0}-\gamma Fe_{2}O_{3}$ mixture of smaller particle size. In this study, nanoparticles (NPs) of Fe₃O₄ and γ Fe₂O₃ were prepared by hydrothermal reaction, and the structure and methylene blue decomposing ability were investigated by 57Fe-Mössbaur spectroscopy, X-ray diffractometry (XRD) and ultraviolet-visible light absorption spectroscopy (UV-Vis).

2 Experimental

Nanoparticles (NPs) of Fe₃O₄ and γ Fe₂O₃ were prepared by hydrothermal reaction. (NH₄)₂Fe(SO₄)·6H₂O (Mohr salt) with the weight of 1.960 g was dissolved in 7 mL of deionized water. Separately, 2.702 g of FeCl₃·6H₂O was dissolved in 32 mL of absolute ethanol. Solutions of Mohr salt and FeCl₃were mixed by a magnetic stirrer.

Fig. 1 Mössbauer spectra of NPs of (A) $Fe_{3-x}O_4$ and (B) $\gamma\text{-}Fe_2O_3$ measured at (a) 300 K and (b) 77 K

A black precipitate appeared when 10 mL of 25vol. % NH₃aqueous solution was added in droplets. The resulting solution including black precipitate was transferred to an autoclave and hydrothermally treated at 140 °C for 2 h. The black precipitate was separated from the mother liquor by centrifuging under 9000 r.p.m. for 5 min. NP Fe₃O₄was obtained by overnight drying of the black precipitate which was collected after washing several times by distilled water and ethanol. NP γ Fe₂O₃ was prepared by annealing of the synthesized NP Fe₃O₄ at 250 °C in air for 30 min.

The structural characterization of NPs of Fe₃O₄and γ Fe₂O₃was carried out by ⁵⁷Fe-Mössbauer spectroscopy, X-ray diffractometry (XRD) and a field emission scanning electron microscopy (FE-SEM). Mössbauer spectra were measured between 77 and 300 K by a constant acceleration method with a source of ⁵⁷Co(Rh) and with α -Fe as a reference. XRD measurements were conducted in the 2 θ from 10 to 80° at 0.02° intervals with a scanning rate of 5°min⁻¹, using Cu-K_{α} (λ = 0.1541 nm) radiation emitted under the tube voltage and current of 50 kV and 300 mA, respectively. FE-SEM observation was carried out with the magnification of up to 3.3 × 10⁴ by setting the voltage at 5.0 kV. The samples were not coated with an electrically conductive layer. The purity of each NP was checked using the energy dispersive X-ray analyzer under the voltage of 10 kV and the current of 3.0 × 10⁻⁹ A. A leaching test was performed with 2.0 × 10⁻² mM of 20 mL methylene blue (MB) aqueous solution and 100 mg of bulk Fe⁰-NP γ Fe₂O₃ mixture for 24 h. UV-Vis spectra were measured in the wavelength range of 200 and 800 nm, using a source of tungsten-deuterium lamp under an output power of 20 W.

3 Results and discussion

Mössbauer spectra of NPs of Fe₃O₄ and γ Fe₂O₃measured at 300 K and 77 K are shown in Fig. 1, the corresponding Mössbauer parameters are listed together with those of bulk Fe₃O₄ and γ Fe₂O₃ in Table 1. The Mössbauer spectrum of NP Fe₃O₄ measured at 300 K is composed of two magnetic sextets with respective isomer shift

		T (K) species	77	100	150	200	250	300	
			Isomer shift : δ (mm s ⁻¹)						
Fe ₃ O ₄	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.53	0.52	0.45	0.42	0.39	0.34	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	0.74	0.70	0.71	0.69	0.68	0.66	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.51	0.50	0.46	0.41	0.34	0.32	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	0.81	0.77	0.76	0.71	0.66	0.65	
γFe ₂ O ₃	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.39	0.38	0.36	0.40	0.34	0.33	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.48	0.48	0.46	0.43	0.40	0.37	
			Internal magnetic field: H_{int} (T)						
Fe ₃ O ₄	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	52.0	52.8	50.9	50.6	50.1	49.0	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	47.3	47.7	45.3	46.3	44.1	44.0	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	51.4	51.4	51.0	50.4	50.0	49.2	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	47.3	47.6	47.3	46.7	46.3	45.5	
γFe ₂ O ₃	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	51.2	50.8	50.3	51.0	47.3	46.4	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	52.5	52.3	52.0	51.5	50.7	49.9	
			FWHM : Γ (mm s ⁻¹)						
Fe ₃ O ₄	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.87	0.82	0.68	0.65	0.87	1.09	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	1.29	0.92	0.91	1.16	1.26	1.55	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.66	0.60	0.52	0.49	0.47	0.46	
		$\mathrm{Fe^{II+III}}(O_{\mathrm{h}})$	0.66	0.60	0.52	0.49	0.47	0.46	
γFe ₂ O ₃	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.85	0.91	1.05	0.83	1.10	1.21	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	0.57	0.57	0.55	0.54	0.54	0.55	
			Absorption area : A (%)						
Fe ₃ O ₄	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	54.8	54.9	52.6	59.2	54.9	56.3	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	45.2	45.1	47.4	40.8	45.1	43.7	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	70.3	63.7	59.6	55.8	55.2	54.8	
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	29.7	36.3	40.4	44.2	44.8	45.2	
γFe ₂ O ₃	NP	$Fe^{III}(T_d)$	100	100	100	100	100	100	
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	100	100	100	100	100	100	

Table 1 Temperature dependence of $^{57}\text{Fe-Mössbauer}$ parameters of nano and bulk particles of Fe_3O_4 and γFe_2O_3

(δ), internal magnetic field (H_{int}) and linewidth (Γ) of $0.34_{\pm 0.03}$ mm s⁻¹, $49.0_{\pm 0.30}$ T and $1.09_{\pm 0.03}$ mm s⁻¹ due to tetrahedral (T_d) Fe^{III}, and of $0.66_{\pm 0.11}$ mm s⁻¹, $44.0_{\pm 0.71}$ T and $1.55_{\pm 0.31}$ mm s⁻¹ due to octahedral (O_h) Fe^{II+III}. The absorption area (A) of Fe^{III}(T_d) and Fe^{II+III}(O_h) was determined to be 56.3 and 43.7 %, which indicates that NP Fe₃O₄ prepared by hydrothermal reaction is not regular but defective Fe₃O₄ denoted as Fe_{3-x}O₄. The values of 'x' and Fe^{II}/Fe^{III} rate indicated as 'r(Fe^{II}/Fe^{III})' in NP Fe_{3-x}O₄ can be calculated by the following equations [4];

$$\mathbf{x} = (2 - A \left(\mathrm{Fe^{II+III}}(O_{\mathrm{h}}) \right) / A \left(\mathrm{Fe^{III}}(T_{\mathrm{d}}) \right) / \left(5 \times A \left(\mathrm{Fe^{II+III}}(O_{\mathrm{h}}) \right) / A \left(\mathrm{Fe^{III}}(T_{\mathrm{d}}) \right) + 6 \right),$$
(1)

$$r\left(\mathrm{Fe^{II}Fe^{III}}\right) = \left\{ A\left(\mathrm{Fe^{II+III}}(O_{\mathrm{h}})\right) 2 \right\} / \left\{ A\left(\mathrm{Fe^{II+III}}(O_{\mathrm{h}})\right) / 2 + A\left(\mathrm{Fe^{III}}(T_{\mathrm{d}})\right) \right\}.$$
(2)

Deringer

Fig. 2 Temperature dependences of (**A**) ln $(A_T/A_{77 \text{ K}})$ and (**B**) δ of (**a**) NPs and (**b**) bulk samples of Fe₃O₄ (*black*) and γ -Fe₂O₃ (*red*) attributed to tetrahedral Fe^{III} (*circle*) and octahedral Fe^{II+III} (*triangle*)

From A values of Fe^{III}(T_d) (= 56.3 %) and that of Fe^{II+III} (O_h) (= 43.7 %) obtained from the Mössbauer spectrum of NP Fe_{3-x}O₄ measured at 300 K, the values of 'x' and r(Fe^{II}/Fe^{III}) were calculated to be 0.124 and 0.280, respectively. These results show that NP Fe_{3-x}O₄ prepared by the hydrothermal reaction is not regular but defective Fe₃O₄ containing vacant Fe^{II+III}(O_h) sites. δ values of 0.53_{±0.02} and 0.74_{±0.08} mm s⁻¹ measured at 77 K (Fig. 1, (A-b)), respectively, attributed to tetrahedral (T_d) Fe^{III} and octahedral (O_h) Fe^{II+III} decreased to 0.34_{±0.03} and 0.66_{±0.11} mm s⁻¹ at 300 K (Figs. 1 and 2 (A-a)). The Debye temperature (Θ_D) can be calculated from (3):

$$-\ln f = \left[-\frac{3E^2}{k\Theta_D Mc^2} \left(\frac{1}{4} + \left(\frac{T}{\Theta_D} \right)^2 \int_0^{\Theta_D/T} \frac{x dx}{(e^x - 1)} \right) \right],\tag{3}$$

🖄 Springer

		Species	$d\ln \left[A_T/A_{77\ K}\right]/dT$	$\Theta_{\rm D}({\rm K})$	$\Theta_{\rm D}$ '(K)
Fe ₃ O ₄	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	-2.33×10^{-3}	264	267
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	-1.92×10^{-3}	270	282
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	-1.36×10^{-3}	265	280
		$\mathrm{Fe}^{\mathrm{II}+\mathrm{III}}(O_{\mathrm{h}})$	-1.64×10^{-3}	304	307
γFe ₂ O ₃	NP	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	-1.36×10^{-3}	256	259
	Bulk	$\mathrm{Fe}^{\mathrm{III}}(T_{\mathrm{d}})$	-1.87×10^{-3}	287	265

Table 2 The Debye temperature of nano and bulk particles of Fe₃O₄ and γ Fe₂O₃derived from (4) (Θ _D) and from (7) (Θ _D)

where f, k, M and c are recoil free fraction, Boltzmann constant, mass of the Mössbauer nuclei, and speed of light in vacuum [5, 6]. For $T > \Theta_D/2$ and, (3), is approximated by (4) [6]

$$-\frac{d\ln f}{dT} = \frac{3E^2}{kc^2} \left(\Theta_{\rm D}{}^2 M\right)^{-1}.$$
 (4)

By plotting $\ln A$ (absorption area) against T, Θ_D can be obtained from the slope of a straight line.

Temperature dependence of δ can be expressed as (5) [7]

$$\frac{d\delta}{dT} = -\frac{3Ek}{2Mc^2},\tag{5}$$

 $\Theta_{\rm D}$ ', $\Theta_{\rm D}$ estimated from temperature dependence of δ , is derived by combining (4) and (5), *i.e.*,

$$\Theta_{\rm D}' = -\frac{\sqrt{2E}}{k} \left[\frac{d\delta/dT}{d\ln\left(A/A_{77K}\right)/dT} \right]^{1/2}.$$
(6)

In the case of 57 Fe, (6) is expressed as

$$\Theta_{\rm D}' = 4.327 \times 10^2 \left[\frac{d\delta/dT}{d\ln[A/A_{77K}]/dT} \right]^{1/2}$$
(7)

Debye temperature was estimated by using the obtained δ and A values for each components, as listed in Table 2. By using (7), Θ_D ' values of $280_{\pm 4.15}$ K for Fe^{III}(T_d) and $307_{\pm 5.70}$ K for Fe^{II+III}(O_h) were estimated for bulk Fe₃O₄, while smaller Θ_D 's of $267_{\pm 5.45}$ and $282_{\pm 7.17}$ K were obtained for the corresponding components of NP Fe_{3-x}O₄. On the other hand, Mössbauer spectra of NP γ Fe₂O₃ composed of one sextet with δ , H_{int} and Γ of $0.40_{\pm 0.02}$ mm s⁻¹, $51.2_{\pm 0.14}$ T and $0.85_{\pm 0.11}$ mm s⁻¹ at 77 K, and $0.33_{\pm 0.03}$ mm s⁻¹, $46.4_{\pm 0.27}$ T and $1.21_{\pm 0.11}$ mm s⁻¹ at 300 K, respectively. Θ_D ' of NP and bulk γ Fe₂O₃ was respectively calculated to be $259_{\pm 4.00}$ and $265_{\pm 1.05}$ K. These results show that NP Fe_{3-x}O₄ was oxidized to be NP γ Fe₂O₃ after annealing at 250 °C for 30 min, and that the chemical environment of iron in NPs of Fe₃O₄ and γ Fe₂O₃ is less rigid than that of bulk compounds. No significant differences in values of the Debye temperature (Θ_D) were estimated by using (4).

As shown in Fig. 3, XRD pattern of NP $Fe_{3-x}O_4$ showed peaks with broader linewidth observed at 2θ of 30.2° , 35.7° , 43.3° , 53.7° , 57.3° and 62.8° attributed to

Fig. 4 FE-SEM images of (a) $Fe_{3-x}O_4$ and (b) γ -Fe₂O₃ nanoparticles

Fe₃O₄ (PDF No. 00-019-0629) and γ Fe₂O₃ (PDF No. 00-039-1346). It is difficult for distinguishing Fe₃O₄ and γ Fe₂O₃ because they both have identical inverse spinel structure and similar lattice parameters. A size of short-range order of NP Fe_{3-x}O₄ can be estimated by applying the Scherrer's formula [8, 9], *i.e.*,

$$t = K\lambda/B\cos\Theta,\tag{8}$$

where *t*, *K*, λ , *B* and Θ are a size of short-range order (in nm), shape factor (= 0.849– 1.107), wavelength of X-ray from Cu-K_{α} (= 0.1541 nm), FWHM and Θ at the peak (in radian), respectively. By using FWHM value of 0.44° obtained from (311) plane of the XRD pattern, the crystallite size of NP Fe_{3-x}O₄ was determined to be 29–37 nm. NP γ Fe₂O₃ prepared by annealing of NP Fe_{3-x}O₄ at 250 °C for 30 min did not show significant difference in the crystallite size. Consistent results were obtained from the FE-SEM observation of NPs of Fe_{3-x}O₄ and γ Fe₂O₃ having the particle size of 30–40 nm as shown in Fig. 4.

UV-Vis spectra of 2.0×10^{-2} mM methylene blue (MB) aqueous solution before and after 24-hour leaching with a mixture of bulk Fe⁰-NP γ Fe₂O₃(3:7) are shown in Fig. 5. MB concentration was calculated by the Beer-Labert equation, *i.e.*,

$$Abs. = \varepsilon C_{\rm t}l,\tag{9}$$

where *Abs.*, ε , C_t and *l* are absorbance, molar absorption coefficient (= 7.9 × 10⁵ Lmol⁻¹ cm⁻¹ at 660 nm for MB [10]), concentration of MB solution after t-min leaching and optical path length (1 cm), respectively. Decrease in MB concentration was observed from 1.92×10^{-2} to 5.99×10^{-3} , 3.24×10^{-3} , 1.16×10^{-3} and 9.49×10^{-4} mol L⁻¹ after leaching of 0, 6, 12, 18 and 24 h, respectively. A rate constant of first order reaction for MB decomposition(k_{MB}) can be estimated by (10),

$$C_{\rm t} = C_0 \exp\left(-k_{\rm MB}t\right). \tag{10}$$

As a result of $\ln(C_t/C_0)$ vs. t plot, $k_{\rm MB}$ was determined to be 2.1×10^{-3} min⁻¹. Our previous study revealed that MB was decomposed by Fe⁰- γ Fe₂O₃ '*bulk*' mixture (3:7) with the smaller $k_{\rm MB}$ of 1.6×10^{-1} day⁻¹ (= 1.1×10^{-4} min⁻¹) [11]. These results prove that MB decomposing ability of Fe⁰- γ Fe₂O₃ mixture (3:7) was increased when the NP γ Fe₂O₃ was utilized. It is concluded that environmental purifying ability will be improved by using nanoparticles of iron oxides.

4 Summary

NPs of Fe_{3-x}O₄ were prepared by hydrothermal reaction and the structure was characterized by ⁵⁷Fe-Mössbauer spectroscopy and XRD. Chemical reaction of $(NH_4)_2Fe(SO_4)\cdot 6H_2O$ and FeCl₃·6H₂O using an autoclave provided defective Fe_{3-x}O₄ with 'x' of 0.124 having the particle size of 29–37 nm. Mössbauer spectra of NP Fe_{3-x}O₄ are composed of two relaxed sextets with δ , H_{int} , Γ and A of 0.34_{±0.03} mm s⁻¹, 49.0_{±0.30} T, 1.09_{±0.03} mm s⁻¹ and 56.3 % for tetrahedral Fe^{III}, and 0.66_{±0.11} mm s⁻¹, 44.0_{±0.71} T, 1.55_{±0.31} mm s⁻¹ and 43.7 % for octahedral (O_h) Fe^{II+III}, respectively. On the other hand, the Mössbauer spectrum of NP γ Fe₂O₃ prepared from annealing of NP Fe_{3-x}O₄ at 250 °C for 30 min consisted of one sextet with δ , H_{int} and Γ of

 $0.33_{\pm 0.03}$ mm s⁻¹, 46.4_{±0.27} T and $1.21_{\pm 0.11}$ mm s⁻¹, respectively. Debye temperature (Θ_D) of each component of NP Fe_{3-x}O₄ was respectively estimated to be $267_{\pm 5.45}$ K for Fe^{III}(T_d) and $282_{\pm 7.17}$ K for Fe^{II+III}(O_h), both of which were smaller than that obtained for bulk Fe₃O₄ of $280_{\pm 4.15}$ K and $307_{\pm 5.70}$ K. A smaller Θ_D of $259_{\pm 4.00}$ K was also obtained for NP γ Fe₂O₃. These results indicate that the chemical environment of iron in nano particles is less rigid than that of bulk materials. Methylene blue (MB) decomposing rate caused by bulk Fe⁰-NP γ Fe₂O₃mixture was calculated to be 2.1×10^{-3} min⁻¹, indicating that MB was effectively decomposed by using nanoparticle. It is concluded that NP Fe_{3-x}O₄ is one of the effective materials for environmental purification.

References

- Liang, X., Zhong, Y., Zhu, S., Ma, L., Yuan, P., Zhu, J., He, H., Jiang, Z.: The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. J. Hazard. Mater. **199–200**, 247–254 (2012)
- Pathak, T.K., Vasoya, N.H., Natarajan, T.S., Mobi, K.B., Tayabe, R.J.: Photocatalytic degradation of aqueous nitrobenzene solution using nanocrystalline Mg-Mn ferrites. Mater. Sci. Forum 764, 116–129 (2013)
- Kubuki, S., Shibano, K., Akiyama, K., Homonnay, Z., Kuzmann, E., Ristić, M., Nishida, T.: Effect of the structural change of an iron-iron oxide mixture on the decomposition of trichloroethylene. J. Radioanal. Nucl. Chem. 295, 23–30 (2012)
- Topsøe, H., Dumesic, J.A., Boudart, M.: Mössbauer spectra of stoichimetric and non stoichiometric Fe₃O₄ microcrystals. J. Phys., Colloque C6. 35(supplément au n° 12), C6–411 (1974)
- Homonnay, Z., Musić, S., Nishida, T., Kopelev, N.S., Vertés, A.: ch.1 Physical basis of Mössbauer spectroscopy. In: Vértes, A., Homonnay, Z. (eds.) Mössbauer Spectroscopy of Sophisticated Oxides, pp. 1–26, Akademiai Kiado, Budapest (1997)
- Nishida, T.: Advances in the Mössbauer effect for the structural study of glasses. J. Non-Cryst. Solids 177, 257–268 (1994)
- Katada, M., Herber, R.: Lattice dynamics and hyperfine interactions of intercalation compounds FexTiS₂ (x = 1/4, 1/3 and 1/2) and Fe_{1/3}NbS₂ from ⁵⁷Fe Mössbauer spectroscopy. J. Solid State Chem. **33**(3), 361–369 (1980)
- Scherrer, P.: Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten Gesell. 2, 98–100 (1918)
- 9. Patterson, A.: The Scherrer formula for X-ray particle size determination. Phys. Rev. **56**(10), 978–982 (1939)
- Wakasa, M.: Magnetic field effects on the photocatalytic reaction. Research Report of Comprehensive Research Organization, vol. 4. http://sucra.saitama-u.ac.jp/modules/xoonips/download. php/KP17A05-76.pdf?file_id=1427 (in Japanese) (2006)
- Kubuki, S., Shibano, K., Akiyama, K., Homonnay, Z., Kuzmann, E., Ristić, M., Nishida, T.: Decomposition mechanism of methylene blue caused by metallic iron-maghemite mixture. Hyperfine Interact. 218, 47–52 (2013)