¹⁵¹Eu MÖSSBAUER STUDY OF LUMINESCENT Y₂O₃:Eu³⁺ CORE-SHELL NANOPARTICLES

E. Kuzmann¹, A. Vértes¹, G. Bohus², V. Hornok³, A. Oszkó¹, I. Dékány^{3,4}

 ¹Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös University, Budapest Hungary
² Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
³ Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
⁴ Department of Medical Chemistry, University of Szeged, Szeged, Hungary

More and more industrial interest was focused on semiconductor-based light-emitting diodes (LEDs). In their preparation the phosphors play a very important role. Among the phosphors Eu doped Y_2O_3 is one of the best luminophors regarding the emission efficiency of a red light. For the flat-panel display industry it became necessary to obtain nanoparticles with regular morphology and narrow size distribution.

In our study monosdisperse $Y_2O_3{:}Eu^{3+}$ spherical nanoparticles and $Y_2O_3@Eu^{3+}$ core-shell structured nanoparticles were synthetized by homogeneous precipitation method. TEM confirmed that spherical particles were obtained. Photoluminescence emission spectra of samples were observed in the range of 550-650 nm. ¹⁵¹Eu Mössbauer parameters (Table I) undoubtfully proves that Eu atoms exist only in oxidation state Eu^{3+} in spherical Y₂O₃:Eu³⁺ and Y₂O₃@Eu³⁺ core-shell all nanoparticles. We have found small but significant differences between the ¹⁵¹Eu Mössbauer spectra (Fig. 1 (a) and (b)) and the corresponding parameters (Table 1) of spherical Y_2O_3 :Eu³⁺ and Y_2O_3 @Eu³⁺ core-shell nanoparticles. Higher isomer shift and V_{zz} and smaller linewidth are characteristic of the spherical Y₂O₃:Eu³⁺ samples than those of belonging to the $Y_2O_3@Eu^{3+}$ coreshell samples. This can be well understood in terms of the different structures of these nanoparticles. In the case of the spherical Y_2O_3 :Eu³⁺ sample with 2.5% Eu³⁺ content the isomer shift is close to that reported for the Eu substitution in Y_2O_3 [1]. The relatively small linewidth also indicate that Eu occupy a well defined site in the lattice. The high Vzz in comparison to that of Eu in Eu_2O_3 can be originated from the change in the charge distribution probable due to lattice distorsion appearing at the incorporation of Eu into the Y site. All these parameters indicate that Eu occupies the Y site in Y₂O₃ in the spherical Y_2O_3 :Eu³⁺ nanoparticles.

The observed isomer shift (Table 1) for all $Y_2O_3@Eu^{3+}$ core-shell samples resonantly agrees with that found earlier for Eu_2O_3 [2]. This reflects that Eu locates in Eu_2O_3 in the core-shell samples (Fig. 2). The very high linewidth is associated with a highly defected Eu_2O_3 occurring in the shell of these nanoparticles.

Figure 1. Typical room temperature ^{151}Eu Mössbauer spectra of $Y_2O_3{:}Eu^{3+}$ and $Y_2O_3@Eu^{3+}$ nanoparticles (a) $Y_2O_3{:}Eu^{3+}$ containing 10% Eu^{3+} (b) $Y_2O_3@Eu^{3+}$ with 75:25 of $Y_2O_3{:}Eu_2O_3$

Table I: ^{151}Eu Mössbauer parameters of $Y_2O_3{:}Eu^{3{\scriptscriptstyle +}}$ and $Y_2O_3@Eu^{3{\scriptscriptstyle +}}$ nanoparticles

	Y ₂ O ₃ :Eu ³⁺ 2.5% Eu ³⁺	Y ₂ O ₃ :Eu ³⁺ 10% Eu ³⁺	$\begin{array}{l} Y_2O_3@Eu^{3+} \\ 75:25 \\ Y_2O_3:Eu_2O_3\end{array}$	Y ₂ O ₃ @Eu ³⁺ 10% Eu ³⁺
δ (mm/s)	1.28 (0.05)	1.19 (0.02)	1.03 (0.02)	1.02 (0.03)
V_{ZZ} (10 ²¹ V/m ²)	4.78 (0.52)	4.77 (0.16)	2.89 (0.81)	3.53 (0.95)
η	0.98 (0.21)	0.98 (0.07)	0.99 (0.38)	0.98 (0.34)
W(mm/s)	2.10 (0.22)	2.10 (0.08)	3.70 (0.27)	3.02 (0.40)

Figure 2. The schematic illustration of the nanoparticles

 H.T. Hintzen, H.M.van Noort, Phys. Chem. Sol. 49, (1988) 873-881
E. Bauminger, G.M. Kalvius, I. Novik, In: Mössbauer Isomer Shifts (Eds. G. Shenoy, F. Wagner), North Holland, Amsterdam, New York, Oxford, 1978, pp.663-758.