NEW CONDUCTIVE VANADATE GLASS WITH HIGH CHEMICAL DURABILITY

T. Nishida^{*1}, I. Furumoto¹, H. Masuda² and S. Kubuki²

¹Kinki University, Kayanomori 11-6, Iizuka, Fukuoka 820-8555, JAPAN

²Tokyo Metropolitan University, Minami-osawa 1-1, Hachi-oji, Tokyo192-0397, JAPAN

Electrical conductivity (σ) of semiconducting 20BaO· 10Fe₂O₃·70V₂O₅ glass can be changed from the order of 10⁻⁷ to 10⁰ S cm⁻¹ by changing temperature and duration of isothermal annealing [1-3]. Mössbauer atoms incorporated into glass matrix play a role of probe for the local structural study. Mössbauer spectrum of vanadate glass shows a marked decrease in quadrupole splitting (Δ) after isothermal annealing at temperatures higher than glass transition temperature (T_g) or crystallization temperature (T_c) [1-3]. Quadrupole splitting is expressed by:

$$\Delta = eq \cdot eQ/2 \times (1 + \eta^2/3)^{1/2},$$
 (1)

in which eq and Q are electric field gradient and nuclear quadrupole moment. The former is composed of eq_{val} , caused by valence electrons, and eq_{lat} caused by steric configuration of neighboring atoms. In case of high-spin Fe^{III}, eq_{val} becomes zero, since five 3d-orbitals are equivalently occupied by five valence electrons. Since glass has isotropic structure, it is considered that asymmetry parameter (η) is zero.

Decrease of Δ is ascribed to a decreased distortion of Fe^{III}O₄ tetrahedra or *structural relaxation* of 3D-network, since *eq* is equal to *eq*_{lat} and hence Δ is directly proportional to *eq*_{lat}. *Structural relaxation* of distorted Fe^{III}O₄ tetrahedra detected by Mössbauer measurement is also the case for distorted V^{IV}O₄ or V^VO₄ tetrahedra, since they share corner oxygen atoms with Fe^{III}O₄ in the 3D-network.

In this study, local structure of new conductive vanadate glasses, 20BaO \cdot 10Fe₂O₃ \cdot *x*WO₃ \cdot (70-*x*)V₂O₅, was investigated by means of Mössbauer spectroscopy. Mössbauer spectra of new vanadate glass with "*x*" of 20, annealed at 500 °C for 240 min, resulted in a marked decrease of Δ from 0.82 to 0.76 mm·s⁻¹. This reflects a decreased distortion of Fe^{III}O₄, V^{IV}O₄ and V^VO₄ tetrahedra, as observed in 20BaO·10Fe₂O₃·70V₂O₅ [1-3] and 20BaO·10Fe₂O₃·*x*MnO₂·(70-*x*)V₂O₅ glasses [4]. In case of vanadate glass with "*x*" of 35, an identical Δ value of 0.80 mm·s⁻¹ was observed in the Mössbauer spectra, irrespective of the isothermal annealing.

Isothermal annealing of vanadate glass with "*x*" of 20 at

500 °C for 240 min resulted in a marked increase of σ from 3.9×10^{-6} to 2.1×10^{-3} S · cm⁻¹, while comparable σ values of 0.88×10^{-5} and 1.6×10^{-5} S · cm⁻¹ were obtained when "x" was 35. These results indicate that the marked increase of σ observed when "x" was 20 is due to a decreased distortion of the 3D-network.

Plot of T_g against the Δ of Fe^{III} gives a straight line, depending on the site occupation of Fe^{III} atoms; slope of the straight line becomes 680 K·(mm·s⁻¹)⁻¹ when they occupy tetrahedral network forming (NWF) sites [5], while it becomes 260 in octahedral NWF sites [6]. This experimental rule, " T_g - Δ rule" [5], is valid for several inorganic glasses, and hence we can know "site occupation" of Fe^{III} in several glasses. In the present study, slope of 680 was obtained for glasses with "x" of 0-50, indicating that Fe^{III} evidently occupied substitutional sites of V^{IV}O₄ or V^VO₄ tetrahedra, not of W^{VI}O₆ octahedra.

Leaching test with boiling water for 120 min indicated that dissolution of vanadium ion was depressed from 30 to 11 and 10 mg·1⁻¹ when "x" was changed from 0 to 20 and 35, respectively. These results evidently prove that introduction of $W^{VI}O_4$ and $W^{VI}O_6$ units into 3D-network of vanadate glass is effective for the improvement of water-resistivity. Leaching test with 20%HCl solution at 25 °C for 72 h showed higher chemical durability of vanadate glass when "x" was equal to or more than 20. Hence, it is concluded that introduction of 20 mol% WO₃ is effective for the preparation of chemical durable conductive vanadate glass.

References

- [1] T. Nishida, Japanese Patent No. 3854985 (2006).
- [2] T. Nishida, Japanese Patent, Tokugan 2006-99286 (2006) / 2008-508645 (2008).
- [3] S. Kubuki, H. Sakka, K. Tsuge, Z. Homonnay, K. Sinkó, E. Kuzmann, H. Yasumitsu and T. Nishida, J. Ceram. Soc. Jpn., 115 (2008) 776-779.
- [4] S. Kubuki, H. Masuda, K. Akiyama, I. Furumoto and T. Nishida, *Hyperfine Interact.*, DOI10.1007/s10751-011-0433-2 (2011).
- [5] T. Nishida, H. Ide and Y. Takashima, Bull. Chem. Soc. Jpn., 63 (1990) 548-553.
- [6] T. Nishida, M. Suzuki, S. Kubuki, M. Katada and Y. Maeda, J. Non-Cryst. Solids, **194** (1996) 23-33.

*nishida@fuk.kindai.ac.jp